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Abstract

An asymptotic theory is developed for anisotropic inhomogeneous and laminated piezoelectric plates on the basis
of three-dimensional linear piezoelectricity. The inhomogeneity is assumed in the thickness direction and includes
the important piezoelectric laminates as a special case. Through asymptotic expansions, the resulting two-

dimensional di�erential equations are of the same form for each order, with di�erent nonhomogeneous terms being
determined systematically by preceding-order solutions. The governing equations of the leading-order, when
degenerated to pure elasticity, are shown to be the same as those for equivalent classical thin elastic plates. The

proposed methodology is illustrated by considering a rectangular piezoelectric plate subject to both mechanical and
electric loadings with its edges simply supported and grounded. A three-dimensional solution for the fully
electromechanically coupled problem is obtained by successively solving the two-dimensional ®eld equations from

the leading order to higher orders. Excellent agreement is observed with established results and new results are
presented, from which signi®cant physical insights are discussed. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the discovery of the piezoelectric e�ect by Curie brothers in 1880, research on piezoelectricity
has received much attention (e.g. Tiersten, 1969; Mason, 1981; Maugin, 1988). The use of piezoelectric
materials as media to transform electric and acoustic waves has made telecommunication possible.
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Advanced micro-electro-mechanical systems (MEMS) use piezoelectric materials in the latest
technologies of smart/intelligent designs featuring miniaturization. One example is the application of the
piezoelectric accelerometer to trigger an airbag in tens of thousandths of a second during an accident.
The electromechanical coupling of piezoelectric materials has immense technological potential in
designing smart/intelligent materials and structures ranging from huge aerospace structures to miniature
medical apparatus. Because of their relative small size and light weight, piezoelectric elements can be
integrated in a complex actuator network such as in robotics design without signi®cantly a�ecting the
structural properties of the entire system.

The development of research in piezoelectricity in the last decade has been particularly intensive. The
distinctive coupling of electricity and elasticity has been foreseen to have valuable potential in
engineering applications. The use of piezoelectric actuators as elements of intelligent structures was
investigated by Crawley and de Luis (1987) via experiments and analytic models. Other relevant work
includes those of Lee and Moon (1989), Lee (1990), Wang and Rogers (1991), Zhou and Tiersten
(1994), Koconis et al. (1994a, 1994b), and Batra et al. (1996a, 1996b). A theory was proposed by Tzou
(1993) and Tzou and Bao (1995) for vibration control of laminated thin shells with piezoelectric sensors
and actuators. In another attempt, Mitchell and Reddy (1995) developed a hybrid laminated plate
model combining the higher-order laminated plate theory for mechanical displacements and the
layerwise theory for an electric potential. Reddy (1999) further extended an equivalent single-layer plate
model and presented Navier solutions for rectangular laminates with integrated sensors and actuators
and displacement ®nite element models. The possibility of tailoring adaptive materials to control
vibration of aircraft wings was explored by Librescu et al. (1993, 1996, 1997). Other piezoelectric plate
analyses include the work of Mindlin (1972), Tauchert (1992), and Huang and Wu (1996) in which the
mechanical displacement components were modeled by either the classical or the ®rst-order shear
deformation plate theory.

To date, most two-dimensional plate models are based on either the classical Kirchho� hypothesis or
shear deformation theories which do not account for the interfacial continuity conditions. Moreover,
some of the theories presume that the inplane electric ®eld components are negligibly small compared
with the transverse electric ®eld component. However, it was revealed from the exact three-dimensional
analyses of Bisegna and Maceri (1996a) and Cheng et al. (1999) that this is not always the case. On the
contrary, the inplane electric ®eld components are more signi®cant than the transverse component in the
circumstances where the electric displacements on the top and bottom surfaces of a plate are unequal.

In the light of these de®ciencies in existing two-dimensional laminated piezoelectric plate models,
various three-dimensional approaches have been proposed. A transfer matrix approach was developed
by Sosa (1992) to study the electromechanical coupling characteristics of in®nite laminated piezoelectric
plates. Using modi®ed approaches, Xu et al. (1995, 1997) and Lee and Jiang (1996) developed an
analytic three-dimensional methodology for multilayered piezoelectric plates to investigate the e�ects of
electroelastic response and obtained exact three-dimensional solutions. By extending the work of Pagano
(1969, 1970) for pure elastic laminates, Heyliger (1994, 1997) and Heyliger and Brooks (1996) presented
some exact solutions for laminated piezoelectric plates. All of these approaches appear to apply only to
simply supported plates.

Based on the three-dimensional linear theory of piezoelectricity, a consistent theory for thin single-
layer piezoelectric plates made of crystals of Class mm6 symmetry was proposed by Maugin and Attou
(1990) and Bisegna and Maceri (1996b) from asymptotic approaches. A leading-order approximation of
the asymptotic expansion has been given in the two studies. As stated by Maugin and Attou (1990),
however, the computation of higher-order expansions requires the knowledge of the relevant boundary
conditions, which could be obtained by studying the boundary layer e�ects along the contour of the
plate. As a matter of fact, this is a di�cult problem (Gol'denveizer, 1969). In general, specifying the
edge boundary conditions in the sense of the Kirchho� plate theory only yields the accurate leading-
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order interior solution. The leading-order solution does not account for the through-thickness
distribution of the edge boundary conditions and can not be valid near to the edges. An accurate and
consistent description of the boundary conditions for solving high-order interior solutions should
account for the speci®ed edge distribution to achieve a decaying state, i.e. asymptotic to the exact
solution away from edges. The modi®ed boundary conditions di�er from those for the classical
Kirchho� theory by a number of corrective terms re¯ecting the boundary layer e�ects on the interior
solution.

In a recent paper, Wang and Tarn (1994) developed an asymptotic solution for bending and
stretching modes of anisotropic inhomogeneous and laminated plates under lateral tractions and edge
loads, where no boundary layer e�ects are present. Similar approaches were further extended to some
other problems of simply supported plates and shells (Tarn, 1994, 1996a, 1996b; Tarn and Wang, 1994,
1995, 1997; Tarn and Yen, 1995; Wu et al., 1996a, 1996b, 1996c). The asymptotic theories developed are
based on three-dimensional elasticity, and the resulting ®eld equations of each order are reduced to two-
dimensional plate and shell equations which can be successively solved to obtain an interior solution.

The asymptotic approach of Wang and Tarn (1994) in elasticity is generalized to the scope of
piezoelectricity in this paper. An anisotropic inhomogeneous and laminated rectangular piezoelectric
plate with its edges simply supported is considered in illustrative examples. An asymptotic three-
dimensional solution for the plate is obtained and the e�ects of electromechanical coupling are analyzed.
Excellent agreement is demonstrated with established results for laminated piezoelectric plates.

2. Formulation

Consider a plate of uniform thickness h of inhomogenous piezoelectric materials. Let a Cartesian
coordinate system {xi } (i = 1,2,3) be used such that the bottom and top surfaces of the undeformed
plate lie in the planes x3=0 and h, with the reference plane being x3=0. Throughout this paper, the
Einsteinian summation convention applies, unless otherwise speci®ed, to repeated indices of tensor
components, with Latin indices ranging from 1 to 3 while Greek indices over 1 and 2. The dependence
of functions and operators on xa and x3 is not shown explicitly unless necessary.

The description of linear piezoelectricity is based on the elements of elasticity, electrodynamics and
their coupled interactions by means of two mechanical variables, the stress and strain tensors tij and Skl,
and two electric variables, the electric displacement and electric ®eld vectors Di and Ek. In the absence
of body forces and electric charge density, the ®eld equations of elastic equilibrium and Gauss' law of
electrostatics are (Tiersten, 1969; Maugin, 1988)

tij,j � 0, Di,i � 0: �1�
The strain and electric ®eld are related to the elastic displacements uk and the electric potential j

through the gradient relations:

Skl � 1

2
�uk,l � ul,k�, Ek � ÿj,k, �2�

where the second equation implies a quasi-static approximation.
Since there are only 13 relations in the above equations for 22 unknowns, the following 9 additional

equations for constitutive relations are complemented for a complete formulation of the linear theory of
static piezoelectricity

tij � cijklSkl ÿ ekijEk,
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Di � eiklSkl � eikEk, �3�

where cijkl is the fourth-order elastic tensor measured at a constant electric ®eld, ekij the third-order
piezoelectric tensor, and eik the second-order dielectric tensor measured at a constant strain. These
material moduli exhibit the following symmetries

cijkl � cjikl � cklij,

ekij � ekji,

eik � eki: �4�
In particular, the constitutive relations for a monoclinic piezoelectric material with a binary axis

parallel to the x3-axis can be cast as

tab � caborSor � cab33S33 ÿ e3abE3, �5a�

ta3 � 2ca3o3So3 ÿ eoa3Eo, �5b�

t33 � c33orSor � c3333S33 ÿ e333E3, �5c�

Da � 2eao3So3 � eaoEo �5d�

and

D3 � e3orSor � e333S33 � e33E3, �5e�

or, in matrix form,26666666666664

t11
t22
t33
t23
t31
t12
D1

D2

D3

37777777777775
�

26666666666664

c1111 c1122 c1133 0 0 c1112 0 0 e311
c2222 c2233 0 0 c2212 0 0 e322

c3333 0 0 c3312 0 0 e333
c2323 c2313 0 e123 e223 0

c1313 0 e113 e213 0
c1212 0 0 e312

sym: ÿe11 ÿe12 0
ÿe22 0

ÿe33

37777777777775

26666666666664

S11

S22

S33

2S23

2S31

2S12

ÿE1

ÿE2

ÿE3

37777777777775
: �6�

Here, the only material symmetry is assumed to be of re¯ectional symmetry in planes parallel to the
surfaces of the plate. Accordingly, the numbers of independent elastic, piezoelectric and dielectric
moduli are, respectively, 13, 8 and 4 for the monoclinic materials. The inhomogeneity of materials is
with respect to x3 only, i.e.

cijkl � cijkl�x3�,

ekij � ekij�x3�,

Z.-Q. Cheng et al. / International Journal of Solids and Structures 37 (2000) 3153±31753156



eik � eik�x3�: �7�

In particular, if the plate is a layered or laminated medium, comprised of layers of di�erent
homogeneous monoclinic piezoelectric materials, then the material moduli are piecewise constant
functions of x3.

Eqs. (1), (2), (5c) and (5e) may be reformulated as

uo,3 � ÿu3,o � 2So3,

t33,3 � ÿta3,a,

D3,3 � ÿDr,r,

ta3,3 � ÿtab,b,

c333u3,3 � e333j,3 � t33 ÿ c33orSor and

e333u3,3 ÿ e33j,3 � D3 ÿ e3orSor: �8�

By substituting Eqs. (5a) and (5d) into Eq. (8) to eliminate tab and Dr, and expressing So3 from Eq.
(5b) in terms of ta3 and j, the following transfer matrix equation can be given

@ z

�
F
G

�
� e

�
0 A
B 0

� �
F
G

�
, �9�

where we have scaled the thickness coordinate x3=ez, and thus e@=@x3� @=@z � @ z, from the range of
x3 $ [0,h ] to the range of z $ [0,a ] by a small thickness parameter e=h/a, with a being a typical inplane
dimension. The ®eld functions are chosen as

F �

2664
u1
u2
t33
D3

3775,

G �

2664
t13
t23
u3
j

3775, �10�

which ensure the continuity condition of the relevant physical quantities across each layer interface
according to the requirements of equilibrium and material continuity. The 4 � 4 operator matrices, A
and B, contain the inplane di�erential operator @a � @=@xa and depend on z only through the material
moduli:

A �
�

I ÿJb@b
ÿJT

b@b Kbr@b@r

�
,
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B �
�ÿLbr@b@r ÿMb@b
ÿMT

b@b N

�
, �11�

where A and B have been partitioned into 2 � 2 operator sub-matrices. I and N are the matrices with
each of their elements being a scalar de®ned by

I � �I oa� � ÿcÿ1o3a3

� � 1

c1313c2323 ÿ c21323

�
c2323 ÿc1323
ÿc1323 c1313

�
, or

or

�c3ao3� �
�
c1313 c1323
c1323 c2323

�
,

N � �Nao� � 1

c3333e33 � e2333

�
e33 e333
e333 ÿc3333

�
, or

or

Nÿ1 �
�
c3333 e333
e333 ÿe33

�
: �12�

Denoting dob as the Kronecker delta function, Jb and Mb are the matrices with each of their elements
being a vector de®ned byh

J o1
b J o2

b

i
� �dob I oaeba3

�
,

h
Ma1

b Ma2
b

i
� �cab33 e3ab�N, �13�

and Kbr and Lbr are the matrices with each of their elements being a tensor de®ned by

K 11
br � K 12

br � K 21
br � 0,

K 22
br � J o2

b ero3 � ebr,

Lao
br � cabor ÿMa1

b c33or ÿMa2
b e3or: �14�

Here, we have used the superscripts, to which the conventional summation also applies, to denote the
row and column indices of a matrix element in order to distinguish the subscripts of the corresponding
element which is a vector or a tensor. These sub-matrices are only related to the material moduli
depending on x3. The inplane stresses and inplane electric displacements, which may be discontinuous in
x3, are given by

tab � Lao
br@ruo �Ma1

b t33 �Ma2
b D3, and

and

Dr � J a2
r ta3 ÿ K 22

br@bj: �15�
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3. An asymptotic approach

The general problem of piezoelectricity is to determinate the global and local electroelastic ®eld under
applied mechanical and electric loadings. In this paper, the mechanical loading is speci®ed by the shear
tractions q2

a and the normal tractions q2
3 imposed on the plate surfaces. Assume that the two surfaces

of the plate are coated with very thin conducting electrodes which may carry an alternating forcing
potential. For simplicity, the thickness of each electrode is considered to be negligibly small, giving a
mathematical surface with a speci®ed electric potential. Speci®cally, the electric load is given by applied
potentials V2. A short circuit condition corresponds to the same electric potentials holding on the
electroded surfaces.

For general mechanical loading conditions (in particular, the tractions on the top and bottom surfaces
are not equal), the shear stresses are of the order O(e 2) and the normal stress is of the order O(e 3), as in
the case of pure elasticity (Wang and Tarn, 1994). These surface forcing functions are then scaled as

ta3�xr,0� � e2qÿa �xr�, �16a�

ta3�xr,a� � e2q�a �xr�, �16b�

t33�xr,0� � ÿe3qÿ3 �xr�, �17a�

t33�xr,a� � ÿe3q�3 �xr�: �17b�

The surface electric potentials are constructed to be of the order O(e 2), i.e.

j�xr,0� � e2V ÿ�xr�, �18a�

j�xr,a� � e2V ��xr�: �18b�

To ®nd solutions of successive approximations, we express the ®eld functions F and G in the form of
regular expansion in terms of the small thickness parameter e as�

F
G

�
�
X1
n�0

e2n
�
ef �n�

g�n�

�
: �19�

Note that the above expansion terms only contain odd powers of the small parameter e for F and even
powers for G. This is because all of the complemented expansion terms, even powers for F and odd
powers for G, will result in homogeneous equations and thus furnish a trivial solution. All of the
inhomogeneous parts contributed by the mechanical and electric loads as scaled by Eqs. (16)±(18) can
be accounted for by only using Eq. (19). Speci®cally, the surface traction conditions (Eqs. (16) and (17))
and the surface electric potential conditions (18) may be expressed by the components of the expansion
in Eq. (19) for F and G as, for the leading order,

g�0�a �0� � t�0�a3 �0� � 0,

g�0�a �a� � t�0�a3 �a� � 0,
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f
�0�
3 �0� � t�0�33 �0� � 0,

f
�0�
3 �a� � t�0�33 �a� � 0,

g
�0�
4 �0� � j�0��0� � 0,

g
�0�
4 �a� � j�0��a� � 0, �20�

and, for the remaining orders,

g�n�1�a �0� � t�n�1�a3 �0� � qÿa dn0,

g�n�1�a �a� � t�n�1�a3 �a� � q�a dn0,

f
�n�1�
3 �0� � t�n�1�33 �0� � ÿqÿ3 dn0,

f
�n�1�
3 �a� � t�n�1�33 �a� � ÿq�3 dn0,

g
�n�1�
4 �0� � j�n�1��0� � V ÿdn0,

g
�n�1�
4 �a� � j�n�1��a� � V �dn0, �nr0�: �21�

Substituting the expansion in Eq. (19) into Eq. (9) leads to the simple recurrence relations as

@ zg
�0� � 0,

@ zf
�n� � Ag�n�,

@ zg
�n�1� � Bf �n�, �nr0�: �22�

The resulting recurrence relations suggest that a solution can be obtained by successively integrating
these di�erential equations with respect to z and using Eqs. (20) and (21) for the bottom surface

g�0� �

2664
0
0
U
�0�
3

0

3775, �23a�

f �n� �

2666664
U
�n�
1

U
�n�
2

ÿqÿ3 dn1
D
�n�
0

3777775�QAg�n�, �23b�
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g�n�1� �

26664
qÿ1 dn0
qÿ2 dn0

U
�n�1�
3

V ÿdn0

37775�QBf �n�, �nr0�, �23c�

where the fundamental unknowns are some of the components of the expanded ®eld functions, i.e. the
components of three mechanical displacements and the electric displacement at the bottom surface z=0
of the plate,

U �n�o � u�n�o �xr,0�,

U
�n�
3 � u

�n�
3 �xr,0�,

D
�n�
0 � D

�n�
3 �xr,0

��, �24�

with the integral operator being

Q�� � �� �
�z
0

�� � ��dz: �25�

Most plate theories implicitly designate the midplane of a plate to be the reference plane and hence
the fundamental unknowns are those at the midplane. It is clear, however, that at least four components
of the unknown functions F and G will be known a priori when we choose either of the plate surfaces to
be the reference plane. Accordingly, the problem will be reduced to determining the remaining
components of the unknown functions. For the speci®c problem in which the surface tractions and the
surface electric potentials are prescribed by Eqs. (16)±(18), the fundamental unknowns have been chosen
as the physical quantities on the bottom surface of the plate, i.e. Eq. (24). These unknowns have to be
determined in such a way that the conditions (Eqs. (16)±(18)) for the tractions and the electric potential
on the top surface z=a are satis®ed through Eqs. (23a), (23b) and (23c).

Substituting the expression of g(n ) from Eq. (23c) into Eq. (23b) results in an alternative expression

f �n� � X�n� �H�n�, �26�

where

X�n� �

266664
U
�n�
1 ÿ z@1U

�n�
3

U
�n�
2 ÿ z@2U

�n�
3

0
D
�n�
0

377775, �27a�

H�n� � dn1

8>><>>:QA

2664
qÿ1
qÿ2
0
V ÿ

3775ÿ
2664
0
0
qÿ3
0

3775
9>>=>>;�QAQBf �nÿ1�: �27b�

With Eqs. (26) and (27b), the auxiliary function H(n ) are found to have the following recurrence relation
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H�n�1� � dn0

8>><>>:QA

2664
qÿ1
qÿ2
0
V ÿ

3775ÿ
2664
0
0
qÿ3
0

3775
9>>=>>;�QAQB�X�n� �H�n��, �28�

with the leading term H(0)=0.
By denoting the integral operators

�Q�� � �� �
�a
0

�� � ��dz, �29�

the traction and the electric potential conditions (21) on the top surface of the plate can be recast,
through Eqs. (23a), (23b) and (23c), as

�QBaLf
�n�
L �

ÿ
q�a ÿ qÿa

�
dn0, �30a�

�QA3Lg
�n�1�
L � ÿÿq�3 ÿ qÿ3

�
dn0 �30b�

and

�QB4Lf
�n�
L � �V � ÿ V ÿ�dn0, �30c�

where an upper case subscript L takes the values from 1 to 4 and the implicit summation convention
also applies. Further, using Eq. (23c) and noting that A3a � ÿ@a and A33=A34=0, Eq. (30b) can be
rewritten as

ÿ �Q�aÿ z�BaL@af
�n�
L �

�ÿ ÿq�3 ÿ qÿ3
�� a@aq

ÿ
a

�
dn0, �31�

which, when taken with Eq. (30a), gives

�QzBaL@af
�n�
L �

�ÿ ÿq�3 ÿ qÿ3
�� a@aq

�
a

�
dn0: �32�

Eqs. (30a), (32) and (30c) can be recast, with the aid of Eq. (26), in the form of the matrix equation

R�X�n� �H�n�� � dn0Y, �33�
or, denoting RX�n� � ÄR ÄX

�n�
,

ÄR ÄX
�n� � dn0Yÿ RH�n�, �34�

where

ÄX
�n� �

h
U
�n�
1 U

�n�
2 U

�n�
3 D

�n�
0

iT
: �35�

The components of the operator matrices ÄR and R are expressed as

~Rao � Rao � ÿ �QLao
br@b@r,

~Ra3 � �QzLao
br@b@o@r,
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Ra3 � ÿ �QMa1
b @b,

~Ra4 � Ra4 � ÿ �QMa2
b @b,

~R3o � R3o � ÿ �QzLao
br@a@b@r,

~R33 � �Qz2Lao
br@a@b@o@r,

R33 � ÿ �QzMa1
b @a@b,

~R34 � R34 � ÿ �QzMa2
b @a@b,

~R4o � R4o � ÿ �QMo2
b @b,

~R43 � �QzMo2
b @b@o,

R43 � �QN21,

~R44 � R44 � �QN22 �36�
and the components of Y involved in the e�ective loads on the right hand side of Eq. (34) are

Ya � q�a ÿ qÿa ,

Y3 � ÿ
ÿ
q�3 ÿ qÿ3

�� a@aq
�
a

and

Y4 � V � ÿ V ÿ: �37�
Eq. (34) gives the crucial ®eld equations obtained through the ®eld asymptotic approach, from which

the unknowns Eq. (35) of each order can be solved with speci®ed edge conditions at the reference plane
for any set of given material parameters and load parameters. It is obvious from Eq. (34) that Y is only
related to the ®eld equation at the leading-order (n=0), while H(n ) only contributes to the higher-order
®eld equations due to H(0)=0. Since Y is known a priori from Eq. (37), the unknowns of the leading
order can be determined from the ®eld equation of the leading order. Then H(1) can be obtained from
Eq. (28) and, hence, the unknowns for n=1 can be solved from the associated boundary value problem
of the corresponding order. Such a procedure may be continued in this way to higher orders, giving a
simple recurrence process. The higher-order solutions may be considered as the corrections to the
leading-order solution. Therefore, it shows how a full three-dimensional interior solution can be
obtained to any desired degree of accuracy.

The di�erential operator, ÄR, as given by Eq. (36) for the ®eld equations (34) may be recognized, if
degenerated from piezoelectricity to pure elasticity, as being identical with that of the classical plate
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theory (Whitney, 1987; Reddy, 1997) for the bending of a thin monoclinic plate or laminate. Moreover,
the matrix operators ÄR and R involved in Eq. (34) have the same form for the ®eld equations of all
orders. Apart from Y, which is nontrivial only for the leading order, the e�ective loads on the right-
hand side of Eq. (34) only involves the derivatives of the auxiliary function H(n ) with respect to xa and
its integration with respect to z. The auxiliary function of higher-order may be obtained from its
preceding lower-order solution according to Eq. (28), which involves those operators being the same for
all orders. Consequently, any numerical technique can easily be applied to the ®eld asymptotic equations
by always solving the same equations for piezoelectric plates, with the e�ective loads being simply
determined by lower-order solutions.

4. Illustrative example

Two di�erent piezoelectric laminated plates made of lead zirconate titanate (PZT-4) and
polyvinylidene ¯uoride (PVDF) are considered to illustrate the asymptotic method presented in this
paper. They are a two-layer laminate of dissimilar piezoelectric materials PZT-4/PVDF and a three-layer
PVDF laminate. These plates are rectangular and of equal thickness for each layer. Their edges are
simply supported and grounded at x1=0,a and x2=0,b, i.e.

u2 � u3 � t11 � j � 0, on x1 � 0,a and

u1 � u3 � t22 � j � 0, on x2 � 0,b: �38�
The mechanical and electric loadings are speci®ed as

q2
1 � q̂2

1 cos l1x1 sin l2x2,

q2
2 � q̂2

2 sin l1x1 cos l2x2,

q2
3 � q̂2

3 sin l1x1 sin l2x2 and

V 2 � V̂
2

sin l1x1 sin l2x2, �39�
with

l1 � m1p
a

and

l2 � m2p
b

�40�

where a quantity with a hat denotes the amplitude of the corresponding physical quantity. The peak
values (i.e. amplitude) of these quantities may not occur at the same location as there could be a phase
lag. For the speci®c problem, the pointwise edges conditions (38) can be satis®ed both mechanically and
electrically by assuming
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ÄX
�n� �

26666664
U
�n�
1

U
�n�
2

U
�n�
3

D
�n�
0

37777775 �
266666664

Û
�n�
1 cos l1x1 sin l2x2

Û
�n�
2 sin l1x1 cos l2x2

Û
�n�
3 sin l1x1 sin l2x2

D̂
�n�
0 sin l1x1 sin l2x2

377777775: �41�

Solutions of each order may be conducted in the way described earlier, generating numerical results to
the desired degree of accuracy for the speci®c problem.

The material moduli of PZT-4 (Berlincourt et al., 1964) and PVDF (Tashiro et al., 1981) are
summarized in Table 1, where e0 is the permittivity of a vacuum. Those moduli used by Heyliger (1997)
are enclosed in parentheses wherever di�erent from the original values. Emphasis should be placed on
e113 which is not available (marked by stars) in both papers (Heyliger and Brooks, 1996; Heyliger,
1997). It is found that e113=e223 was used by Heyliger et al. (1996). However, this relation is only valid
for PZT-4 but not for PVDF because of mm2 symmetry of the PVDF material.

Throughout the following examples, two loading conditions are examined. One is termed as applied
load, corresponding to normal traction q�3 on the top surface with vanishing electric potential, and
another termed as applied potential, corresponding to electric potential V+ on the top surface with
vanishing normal traction. For both loading conditions, mechanical and electric loadings on the bottom
surface and shear tractions on the top surface are set to zero, i.e. qÿ3 � V ÿ � q2

a � 0: In addition,
m1=m2=1 is used.

A comparison study for a PZT-4/PVDF laminate with reference to Heyliger (1997) is presented in
Table 2. This is a rectangular laminate with PZT-4 on the top and PVDF on the bottom and with equal
thickness. The aspect ratio is a/b = 2 and the span-to-thickness ratio is a/h = 10. The mechanical and

Table 1

Moduli of piezoelectric materials

Moduli PZT-4 PVDF

c1111 (GPa) 139 238.24 (238)

c2222 (GPa) 139 23.6

c3333 (GPa) 115 10.64 (10.6)

c1122 (GPa) 77.8 3.98

c1133 (GPa) 74.3 2.19

c2233 (GPa) 74.3 1.92

c2323 (GPa) 25.6 2.15

c3131 (GPa) 25.6 4.4

c1212 (GPa) 30.6 6.43

e311 (C/m
2) ÿ5.2 ÿ0.13

e322 (C/m
2) ÿ5.2 ÿ0.145 (ÿ0.14)

e333 (C/m
2) 15.1 (15.08) ÿ0.276 (ÿ0.28)

e223 (C/m
2) 12.7 (12.72) ÿ0.009 (ÿ0.01)

e113 (C/m
2) 12.7 (����)b ÿ0.135 (����)b

e11/e0
a 1475 12.5

e22/e0
a 1475 11.98

e33/e0
a 1300 11.98

a e0=8.854185 pF/m.
b (����): values not available in Heyliger (1997).
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electric quantities are non-dimensionalized by

�ui � ui
Pa

, �tij � tij
Pc�

, �j � e�j
Pac�

and �Di � Di

Pe�
, �42�

where either P � ÿq̂q�3 =c� for applied load or P � V̂
��e�=ac�� for applied potential, with c�=1 N/m2

and e�=1 C/m2. For the purpose of consistent comparison, the moduli values used by Heyliger (1997)
have been adopted only to calculate the results in Table 2 and, in particular, e113=e223=ÿ0.01 for
PVDF have been employed. The order of solution is increased from 0 to 7 where the higher-order
solutions are obtained via the recurrence procedure described in Section 3. It can be seen that the
second-order results are quite good. Numerical convergence to four signi®cant digits is reached for the
7th-order solutions and thus subsequent higher-order solutions are not necessary. As observed, the 7th-
order solutions are in excellent agreement with the results of Heyliger (1997). The slight numerical
di�erence in this comparison is possibly due to numerical truncation errors of PZT-4 and PVDF moduli
between Heyliger (1997) and this work.

Hereafter, the original moduli of PZT-4 and PVDF in Table 1, taken from Berlincourt et al. (1964)
and Tashiro et al. (1981), are used and, in particular, e113=ÿ0.135 is adopted. As a corrective step and
for future reference, the dimensionless electric potential through the plate thickness for the above two-
layer PZT-4/PVDF laminate is presented in Fig. 1 for applied load and in Fig. 2 for applied potential.
As expected, the electric potentials in Figs. 1 and 2 are nonlinear through the thickness considering the
entire laminate as a whole. Speci®cally, it is possible to assume the electric potential to be (i) a piecewise
quadratic distribution for a laminate under applied load, as in Fig. 1, and (ii) a piecewise linear
distribution for a laminate under applied potential, as in Fig. 2.

It has been discovered by Bisegna and Maceri (1996a) from a thin single-layer plate limit and by
Cheng et al. (1999) from an exact analytic solution of laminates, thin or thick, that the assumption of
neglecting inplane electric ®eld in two-dimensional thin piezoelectric plate models is satisfactory if D�3 ÿ
Dÿ3 � 0: This is because the ratio of inplane electric ®eld to the transverse electric ®eld is of the order of
plate thickness, which is a small quantity. For the cases when D�3 ÿDÿ3 6� 0, those thin piezoelectric
plate models are unjusti®ed as they have neglected the inplane electric ®eld which, compared with the

Table 2

Comparison of solutions of di�erent orders at amplitude with exact results for a two-layer PZT-4/PVDF laminate (a/b = 2,

a/h=10)

Order

Applied load

�u1 (x3=0) �D3 (x3=h ) �t13 (x3=h/2) �t33 (x3=h/2)

0 1.524eÿ11 1.225eÿ11 0 0

1 1.397eÿ11 1.836eÿ10 1.232 0.4007

2 1.416eÿ11 2.044eÿ10 1.140 0.3513

7 1.413eÿ11 2.014eÿ10 1.150 0.3572

Heyliger (1997) 1.414eÿ11 2.011eÿ10 1.149 0.3571

Applied potential

0 ÿ2.743eÿ12 ÿ2.254eÿ9 0 0

1 ÿ1.890eÿ11 ÿ4.978eÿ8 ÿ0.0836 0.0121

2 ÿ1.602eÿ11 ÿ4.734eÿ8 ÿ0.4120 ÿ0.2289
7 ÿ1.640eÿ11 ÿ4.749eÿ8 ÿ0.3478 ÿ0.1851
Heyliger (1997) ÿ1.640eÿ11 ÿ4.752eÿ8 ÿ0.3451 ÿ0.1869
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transverse electric ®eld, is of order of the reciprocal of plate thickness. Such a signi®cant physical insight
is consistent with the numerical result given in Fig. 3.

Fig. 3 shows the amplitude ratio Ê1=Ê3 of the inplane-to-transverse electric ®eld components which is
discontinuous at the PZT-4/PVDF interface. It is noticed that although the inplane electric ®eld is
negligible within the PVDF layer, on the contrary, it is more signi®cant than the transverse electric ®eld
in the PZT-4 layer, and Ê2 is even more pronounced as Ê2 � 2Ê1: Consequently, the assumption of a
negligible inplane electric ®eld is unjusti®able, at least in the present case.

Numerical results are given for a three-ply (08/908/08) PVDF piezoelectric plate, with each ply being
homogeneous and having equal thickness. The plate is in®nitely wide (b 41) such that a/b 4 0, and
thus we have u2=D2=t12=t23=0. Although a range of results has been graphically given by Heyliger
and Brooks (1996), we present a wider spectrum of the physical quantities in tabulated form. There is a
two-fold purpose here. The ®rst purpose is to present more accurate results using e113=ÿ0.135 for
PVDF as compared to the results of Heyliger and Brooks (1996) where e113=ÿ0.01 was used. The
second purpose is to provide a complete set of results of the physical quantities as a benchmark for
future references.

The asymptotic solutions for mechanical displacements, stresses, electric potential and electric
displacements through the plate thickness are presented in Tables 3±11 to the accuracy as presented.
Tables 3±8 contain peak values of the dimensionless quantities � �u1, �u3, �t13, �t33, �j and �D3� continuous
across the interfaces, while Tables 9±11 contain peak values of the dimensionless quantities ��t11, �t22 and
�D1� discontinuous across the interfaces. The span-to-thickness ratio, a/h, increases from 4 (a moderately
thick plate) to 100 (a thin plate). The point in the thickness direction extends from x3=0 (bottom) to

Fig. 1. Amplitude distribution of dimensionless electric potential through the thickness for a two-layer PZT-4/PVDF laminate

under applied load (a/b=2 and a/h=10).
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Fig. 2. Amplitude distribution of dimensionless electric potential through the thickness for a two-layer PZT-4/PVDF laminate

under applied potential (a/b=2 and a/h=10).

Table 3

Amplitude of inplane mechanical displacement �u1 � 1010 for a three-layer (08/908/08) PVDF laminate (a/b=0)

x3/h
Applied load Applied potential

a/h=4 a/h=10 a/h=20 a/h=100 a/h=4 a/h=10 a/h=20 a/h=100

1 ÿ0.23887 ÿ0.96691 ÿ3.4965 ÿ84.305 0.000740 ÿ0.011595 ÿ0.028813 ÿ0.15374
0.9 ÿ0.11750 ÿ0.68979 ÿ2.7113 ÿ67.357 ÿ0.004109 ÿ0.014142 ÿ0.030148 ÿ0.15401
0.8 ÿ0.03897 ÿ0.44992 ÿ1.9623 ÿ50.446 ÿ0.008397 ÿ0.016753 ÿ0.031546 ÿ0.15430
0.7 0.02383 ÿ0.23446 ÿ1.2395 ÿ33.561 ÿ0.013679 ÿ0.019574 ÿ0.033026 ÿ0.15460
2/3 0.04504 ÿ0.16604 ÿ1.0027 ÿ27.937 ÿ0.015966 ÿ0.020587 ÿ0.033541 ÿ0.15470
0.6 0.02990 ÿ0.09803 ÿ0.6003 ÿ16.761 ÿ0.014161 ÿ0.019620 ÿ0.033032 ÿ0.15460
0.5 0.00693 0.00293 0.0022 0.002 ÿ0.010722 ÿ0.017748 ÿ0.032046 ÿ0.15440
0.4 ÿ0.01732 0.10364 0.6045 16.764 ÿ0.006238 ÿ0.015356 ÿ0.030790 ÿ0.15414
1/3 ÿ0.03479 0.17120 1.0069 27.940 ÿ0.002546 ÿ0.013461 ÿ0.029801 ÿ0.15394
0.3 ÿ0.01479 0.23939 1.2436 33.564 ÿ0.003075 ÿ0.013678 ÿ0.029910 ÿ0.15397
0.2 0.04435 0.45403 1.9662 50.449 ÿ0.004362 ÿ0.014377 ÿ0.030278 ÿ0.15404
0.1 0.11825 0.69286 2.7149 67.361 ÿ0.005547 ÿ0.015177 ÿ0.030714 ÿ0.15413
0 0.23239 0.96867 3.4998 84.309 ÿ0.007054 ÿ0.016124 ÿ0.031224 ÿ0.15423
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Fig. 3. Amplitude distribution of electric ®eld components ratio through the thickness for a two-layer PZT-4/PVDF laminate under

applied potential (a/b=2 and a/h=10).

Table 4

Amplitude of out-of-plane mechanical displacement �u3 � 1010 for a three-layer (08/908/08) PVDF laminate (a/b=0)

x3/h
Applied load Applied potential

a/h=4 a/h=10 a/h=20 a/h=100 a/h=4 a/h=10 a/h=20 a/h=100

1 1.9716 9.5648 51.356 5401.2 0.23461 0.22532 0.22347 0.22280

0.9 1.9516 9.5614 51.362 5401.3 0.20436 0.19874 0.19744 0.19696

0.8 1.9318 9.5567 51.366 5401.3 0.17560 0.17241 0.17147 0.17112

0.7 1.9136 9.5514 51.368 5401.4 0.14817 0.14631 0.14556 0.14528

2/3 1.9079 9.5495 51.368 5401.4 0.13931 0.13766 0.13694 0.13667

0.6 1.8974 9.5459 51.368 5401.4 0.12191 0.12042 0.11970 0.11944

0.5 1.8841 9.5409 51.366 5401.4 0.09654 0.09466 0.09388 0.09361

0.4 1.8738 9.5365 51.363 5401.4 0.07183 0.06901 0.06808 0.06776

1/3 1.8686 9.5338 51.360 5401.4 0.05564 0.05196 0.05090 0.05053

0.3 1.8664 9.5325 51.359 5401.4 0.04760 0.04344 0.04231 0.04191

0.2 1.8612 9.5284 51.352 5401.3 0.02376 0.01794 0.01655 0.01607

0.1 1.8575 9.5236 51.344 5401.3 0.00019 ÿ0.00752 ÿ0.00919 ÿ0.00976
0 1.8541 9.5177 51.333 5401.2 ÿ0.02324 ÿ0.03295 ÿ0.03493 ÿ0.03560
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x3=h (top) and the laminate interfaces are located at x3=h/3 and 2h/3. For the discontinuous
interfacial quantities, values at both neighboring surfaces of the interfaces are tabulated.

The mechanical inplane displacement �u1, in the case of applied potential, is approximately constant
through the thickness for a very thin plate (column 9 in Table 3) but it varies considerably in the case of
applied load even if the plate is very thin (column 5 in Table 3). From the distributions of �u1 in Table 3
and �t13 in Table 5, the piezoelectric plate under applied load behaves similarly to a purely elastic plate.
In particular, �u1 is linear for a thin laminate and zigzag for a thick laminate (Pagano, 1969). Compared
with the results of Heyliger and Brooks (1996) using e113=ÿ0.01, the through-thickness distributions of
�u1 and �t13 are very sensitive to variation in e113 for a thick PVDF laminate under applied potential
(column 6 in Tables 3 and 5), but it is rather indi�erent to e113 when the laminate is thin (column 9 in

Table 5

Amplitude of out-of-plane shear stress �t13 for a three-layer (08/908/08) PVDF laminate (a/b=0)

x3/h
Applied load Applied potential

a/h=4 a/h=10 a/h=20 a/h=100 a/h=4 a/h=10 a/h=20 a/h=100

1 0 0 0 0 0 0 0 0

0.9 1.0324 1.9422 3.6422 17.800 ÿ0.016280 0.006570 0.011434 0.013112

0.8 1.4928 3.2800 6.3849 31.626 ÿ0.005226 0.019371 0.024520 0.026292

0.7 1.5480 4.0850 8.2645 41.486 0.034232 0.038696 0.039337 0.039542

2/3 1.4847 4.2433 8.7039 43.892 0.055241 0.046689 0.044678 0.043975

0.6 1.4766 4.2662 8.7667 44.236 0.040759 0.029769 0.027274 0.026404

0.5 1.4739 4.2804 8.8028 44.429 0.018308 0.004197 0.001115 0.000045

0.4 1.4830 4.2705 8.7691 44.236 ÿ0.005631 ÿ0.021730 ÿ0.025140 ÿ0.026317
1/3 1.4960 4.2506 8.7078 43.893 ÿ0.022809 ÿ0.039282 ÿ0.042712 ÿ0.043895
0.3 1.5458 4.0905 8.2679 41.487 ÿ0.024493 ÿ0.036253 ÿ0.038680 ÿ0.039515
0.2 1.4643 3.2813 6.3868 31.627 ÿ0.023832 ÿ0.026060 ÿ0.026297 ÿ0.026364
0.1 1.0012 1.9415 3.6430 17.800 ÿ0.015831 ÿ0.014063 ÿ0.013429 ÿ0.013194
0 0 0 0 0 0 0 0 0

Table 6

Amplitude of out-of-plane normal stress �t33 for a three-layer (08/908/08) PVDF laminate (a/b=0)

x3/h
Applied load Applied potential

a/h=4 a/h=10 a/h=20 a/h=100 a/h=4 a/h=10 a/h=20 a/h=100

1 1 1 1 1 0 0 0 0

0.9 0.95480 0.96777 0.97018 0.97098 0.0008329 ÿ0.0000870 ÿ0.0000877 ÿ0.00002058
0.8 0.85263 0.88427 0.89028 0.89231 0.0018490 ÿ0.0004779 ÿ0.0003678 ÿ0.00008246
0.7 0.73081 0.76726 0.77411 0.77642 0.0009183 ÿ0.0013723 ÿ0.0008671 ÿ0.00018585
2/3 0.69102 0.72360 0.72965 0.73168 ÿ0.0002430 ÿ0.0018187 ÿ0.0010869 ÿ0.00022958
0.6 0.61352 0.63447 0.63814 0.63937 ÿ0.0027574 ÿ0.0026195 ÿ0.0014637 ÿ0.00030328
0.5 0.49771 0.50017 0.50007 0.50000 ÿ0.0050843 ÿ0.0031537 ÿ0.0016867 ÿ0.00034483
0.4 0.38167 0.36579 0.36197 0.36063 ÿ0.0055943 ÿ0.0028794 ÿ0.0014982 ÿ0.00030356
1/3 0.30371 0.27654 0.27043 0.26831 ÿ0.0048548 ÿ0.0022409 ÿ0.0011430 ÿ0.00023004
0.3 0.26381 0.23281 0.22595 0.22357 ÿ0.0042332 ÿ0.0018453 ÿ0.0009299 ÿ0.00018636
0.2 0.14333 0.11570 0.10974 0.10768 ÿ0.0022840 ÿ0.0008620 ÿ0.0004190 ÿ0.00008287
0.1 0.04368 0.03219 0.02982 0.02900 ÿ0.0006797 ÿ0.0002267 ÿ0.0001063 ÿ0.00002073
0 0 0 0 0 0 0 0 0
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Tables 3 and 5). In other words, the solutions of thick laminates under applied potential di�er
signi®cantly from the solutions of Heyliger and Brooks (1996) while the thin laminate solutions do not.
Note that for a laminate under applied load, the transverse mechanical displacement �u3 is approximately
constant through the thickness even for a thick plate with a/h = 4 (columns 2±5 in Table 4). By
contrast, in the case of applied potential, its distribution is not constant (columns 6±9 in Table 4).
Therefore, assuming at least a piecewise linear distribution along the thickness direction for �u3 is
necessary in this case for constructing a proper two-dimensional approximate theory.

The distribution of electric potential is presented in Table 7. For both thin and thick laminates, its
distribution is approximately piecewise parabolic for applied load while it is approximately piecewise
linear for applied potential. It is noted that the transverse electric displacement �D3 varies insigni®cantly

Table 7

Amplitude of electric potential �j for a three-layer (08/908/08) PVDF laminate (a/b=0)

x3/h
Applied load Applied potential

a/h=4 a/h=10 a/h=20 a/h=100 a/h=4 a/h=10 a/h=20 a/h=100

1 0 0 0 0 1 1 1 1

0.9 0.0014445 0.0019806 0.0033090 0.015431 0.88329 0.89735 0.89942 0.90011

0.8 0.0024851 0.0034655 0.0058526 0.027427 0.77211 0.79545 0.79893 0.80006

0.7 0.0033122 0.0045361 0.0076720 0.035995 0.66578 0.69437 0.69864 0.70007

2/3 0.0035504 0.0048103 0.0081228 0.038091 0.63130 0.66083 0.66525 0.66675

0.6 0.0038747 0.0052708 0.0089457 0.042050 0.56365 0.59397 0.59852 0.60004

0.5 0.0040411 0.0055279 0.0094081 0.044276 0.46479 0.49411 0.49854 0.50000

0.4 0.0038296 0.0052657 0.0089445 0.042050 0.36859 0.39471 0.39868 0.39996

1/3 0.0034823 0.0048024 0.0081208 0.038091 0.30566 0.32865 0.33215 0.33332

0.3 0.0032413 0.0045280 0.0076701 0.035995 0.27449 0.29568 0.29891 0.29998

0.2 0.0024171 0.0034581 0.0058510 0.027426 0.18204 0.19696 0.19924 0.19998

0.1 0.0013971 0.0019757 0.0033081 0.015431 0.09073 0.09843 0.09961 0.09999

0 0 0 0 0 0 0 0 0

Table 8

Amplitude of transverse electrical displacement �D3 � 1010 for a three-layer (08/908/08) PVDF laminate (a/b=0)

x3/h
Applied load Applied potential

a/h=4 a/h=10 a/h=20 a/h=100 a/h=4 a/h=10 a/h=20 a/h=100

1 ÿ0.23462 ÿ0.22531 ÿ0.22345 ÿ0.22282 ÿ5.4216 ÿ11.695 ÿ22.839 ÿ113.31
0.9 ÿ0.22054 ÿ0.21531 ÿ0.21421 ÿ0.21383 ÿ5.1552 ÿ11.588 ÿ22.785 ÿ113.30
0.8 ÿ0.18863 ÿ0.18937 ÿ0.18943 ÿ0.18944 ÿ4.9211 ÿ11.492 ÿ22.737 ÿ113.29
0.7 ÿ0.15042 ÿ0.15301 ÿ0.15340 ÿ0.15352 ÿ4.7173 ÿ11.407 ÿ22.695 ÿ113.28
2/3 ÿ0.13789 ÿ0.13944 ÿ0.13961 ÿ0.13966 ÿ4.6557 ÿ11.381 ÿ22.682 ÿ113.28
0.6 ÿ0.13400 ÿ0.13536 ÿ0.13548 ÿ0.13551 ÿ4.5513 ÿ11.338 ÿ22.660 ÿ113.27
0.5 ÿ0.12811 ÿ0.12916 ÿ0.12921 ÿ0.12922 ÿ4.4166 ÿ11.281 ÿ22.631 ÿ113.27
0.4 ÿ0.12221 ÿ0.12297 ÿ0.12295 ÿ0.12293 ÿ4.3076 ÿ11.234 ÿ22.607 ÿ113.26
1/3 ÿ0.11831 ÿ0.11888 ÿ0.11881 ÿ0.11879 ÿ4.2488 ÿ11.209 ÿ22.595 ÿ113.26
0.3 ÿ0.10575 ÿ0.10529 ÿ0.10502 ÿ0.10492 ÿ4.2216 ÿ11.197 ÿ22.589 ÿ113.26
0.2 ÿ0.06798 ÿ0.06890 ÿ0.06898 ÿ0.06900 ÿ4.1575 ÿ11.169 ÿ22.575 ÿ113.26
0.1 ÿ0.03686 ÿ0.04297 ÿ0.04419 ÿ0.04461 ÿ4.1194 ÿ11.153 ÿ22.566 ÿ113.25
0 ÿ0.02325 ÿ0.03297 ÿ0.03495 ÿ0.03562 ÿ4.1068 ÿ11.147 ÿ22.564 ÿ113.25
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for applied potential for not very thick PVDF laminates (columns 7±9 in Table 8) as �D3 is almost
constant through the thickness. However, �D3 varies signi®cantly for applied load, even if for a thin plate
(columns 2±5 in Table 8).

5. Conclusions

An asymptotic scheme for anisotropic inhomogeneous and laminated piezoelectric plates in the

Table 9

Amplitude of inplane stress �t11 for a three-layer (08/908/08) PVDF laminate (a/b=0)

x3/h
Applied load Applied potential

a/h=4 a/h=10 a/h=20 a/h=10 a/h=4 a/h=10 a/h=20 a/h=10

1 18.055 72.454 261.46 6299.4 ÿ0.40572 0.11042 0.6766 4.1633

0.9 8.978 51.742 202.79 5033.0 ÿ0.02602 0.30764 0.7798 4.1843

0.8 3.089 33.802 146.81 3769.4 0.30970 0.50886 0.8873 4.2063

0.7 ÿ1.628 17.679 92.78 2507.8 0.71739 0.72489 1.0005 4.2293

2/3 ÿ3.220 12.558 75.08 2087.5 0.89194 0.80215 1.0398 4.2372

2/3 ÿ0.202 1.352 7.49 204.9 ÿ0.27442 ÿ0.80629 ÿ1.6612 ÿ8.3893
0.6 ÿ0.106 0.836 4.52 123.0 ÿ0.27939 ÿ0.80986 ÿ1.6632 ÿ8.3897
0.5 0.039 0.069 0.07 0.1 ÿ0.29374 ÿ0.81890 ÿ1.6680 ÿ8.3907
0.4 0.194 ÿ0.696 ÿ4.37 ÿ122.8 ÿ0.31754 ÿ0.83247 ÿ1.6752 ÿ8.3922
1/3 0.306 ÿ1.209 ÿ7.34 ÿ204.8 ÿ0.33952 ÿ0.84411 ÿ1.6813 ÿ8.3934
1/3 2.659 ÿ12.738 ÿ75.18 ÿ2087.6 ÿ0.08549 0.28076 0.7659 4.1815

0.3 1.157 ÿ17.842 ÿ92.88 ÿ2507.8 ÿ0.04407 0.29784 0.7745 4.1832

0.2 ÿ3.287 ÿ33.903 ÿ146.89 ÿ3769.5 0.05669 0.35206 0.8030 4.1890

0.1 ÿ8.828 ÿ51.765 ÿ202.85 ÿ5033.1 0.14806 0.41308 0.8362 4.1958

0 ÿ17.365 ÿ72.380 ÿ261.50 ÿ6299.4 0.26160 0.48419 0.8745 4.2037

Table 10

Amplitude of inplane stress �t22 for a three-layer (08/908/08) PVDF laminate (a/b=0)

x3/h
Applied load Applied potential

a/h=4 a/h=10 a/h=20 a/h=100 a/h=4 a/h=10 a/h=20 a/h=100

1 0.45617 1.2909 4.1888 96.758 ÿ0.45664 ÿ0.96995 ÿ1.8871 ÿ9.3498
0.9 0.30918 0.9678 3.2841 77.339 ÿ0.42852 ÿ0.95801 ÿ1.8811 ÿ9.3486
0.8 0.20123 0.6783 2.4120 57.952 ÿ0.40373 ÿ0.94703 ÿ1.8755 ÿ9.3475
0.7 0.10787 0.4109 1.5636 38.589 ÿ0.38073 ÿ0.93686 ÿ1.8703 ÿ9.3464
2/3 0.07658 0.3248 1.2845 32.139 ÿ0.37317 ÿ0.93362 ÿ1.8687 ÿ9.3461
2/3 0.09331 0.3423 1.3021 32.156 ÿ0.28270 ÿ0.71249 ÿ1.4279 ÿ7.1449
0.6 0.09365 0.2448 0.8209 19.334 ÿ0.27858 ÿ0.71095 ÿ1.4272 ÿ7.1447
0.5 0.09456 0.0996 0.1005 0.101 ÿ0.27433 ÿ0.70953 ÿ1.4265 ÿ7.1446
0.4 0.09690 ÿ0.0452 ÿ0.6199 ÿ19.132 ÿ0.27253 ÿ0.70920 ÿ1.4264 ÿ7.1446
1/3 0.09981 ÿ0.1422 ÿ1.1009 ÿ31.955 ÿ0.27280 ÿ0.70960 ÿ1.4266 ÿ7.1446
1/3 0.09133 ÿ0.1502 ÿ1.1087 ÿ31.962 ÿ0.35526 ÿ0.92736 ÿ1.8656 ÿ9.3455
0.3 0.06141 ÿ0.2360 ÿ1.3877 ÿ38.413 ÿ0.35224 ÿ0.92605 ÿ1.8650 ÿ9.3454
0.2 ÿ0.02753 ÿ0.5025 ÿ2.2359 ÿ57.775 ÿ0.34499 ÿ0.92273 ÿ1.8633 ÿ9.3450
0.1 ÿ0.12972 ÿ0.7908 ÿ3.1077 ÿ77.162 ÿ0.34010 ÿ0.92030 ÿ1.8620 ÿ9.3448
0 ÿ0.26816 ÿ1.1124 ÿ4.0120 ÿ96.581 ÿ0.33718 ÿ0.91870 ÿ1.8612 ÿ9.3446
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framework of three-dimensional piezoelectricity has been presented. Without accounting for boundary
layer e�ects, an interior solution can be obtained using a numerical recurrence procedure to the desired
accuracy.

Numerical examples presented have shown excellent agreement with published data. In addition, new
results for two di�erent piezoelectric laminates comprised of PZT-4 and PVDF materials have been
presented. Signi®cant physical interpretations have been discussed. The two-dimensional piezoelectric
plate models that make certain assumptions through the laminate thickness, such as linear electric
potential for applied load or constant transverse displacement for applied potential, is not consistent
with the results presented in this paper even for a thin plate. In addition, neglect of the inplane electric
®eld is questionable at least in the case where the top and bottom transverse electric displacements are
unequal.

In contrast to almost all approximate two-dimensional plate theories which provide no insight into
the signi®cance of neglecting certain physical quantities, the asymptotic approach developed here is able
not only to obtain accurate interior solutions and important physical insights but also to assess the
order of error involved.

Acknowledgements

Partial ®nancial support from the National Natural Science Foundation of China is gratefully
acknowledged by the ®rst author.

References

Batra, R.C., Liang, X.Q., Yang, J.S., 1996a. Shape control of vibrating simply supported rectangular plates. AIAA J. 34, 116±122.

Batra, R.C., Liang, X.Q., Yang, J.S., 1996b. The vibration of a simply supported rectangular elastic plates due to piezoelectric

actuators. Int. J. Solids Struct. 33, 1597±1618.

Table 11

Amplitude of inplane electrical displacement �D1 � 1010 for a three-layer (08/908/08) PVDF laminate (a/b=0)

x3/h
Applied load Applied potential

a/h=4 a/h=10 a/h=20 a/h=100 a/h=4 a/h=10 a/h=20 a/h=100

1 0 0 0 0 ÿ3.6072 ÿ3.6072 ÿ3.6072 ÿ3.6072
0.9 ÿ0.32196 ÿ0.6030 ÿ1.1294 ÿ5.517 ÿ3.1812 ÿ3.2389 ÿ3.2479 ÿ3.2509
0.8 ÿ0.46698 ÿ1.0189 ÿ1.9801 ÿ9.802 ÿ2.7835 ÿ2.8753 ÿ2.8894 ÿ2.8940
0.7 ÿ0.48689 ÿ1.2697 ÿ2.5634 ÿ12.859 ÿ2.4121 ÿ2.5166 ÿ2.5322 ÿ2.5374
2/3 ÿ0.46833 ÿ1.3193 ÿ2.6998 ÿ13.604 ÿ2.2942 ÿ2.3980 ÿ2.4134 ÿ2.4185
2/3 ÿ0.07398 ÿ0.1937 ÿ0.3914 ÿ1.964 ÿ2.1068 ÿ2.2049 ÿ2.2195 ÿ2.2245
0.6 ÿ0.07473 ÿ0.1962 ÿ0.3968 ÿ1.992 ÿ1.8807 ÿ1.9813 ÿ1.9964 ÿ2.0014
0.5 ÿ0.07517 ÿ0.1976 ÿ0.3999 ÿ2.007 ÿ1.5502 ÿ1.6473 ÿ1.6620 ÿ1.6668
0.4 ÿ0.07484 ÿ0.1963 ÿ0.3969 ÿ1.992 ÿ1.2285 ÿ1.3149 ÿ1.3280 ÿ1.3322
1/3 ÿ0.07423 ÿ0.1939 ÿ0.3916 ÿ1.964 ÿ1.0180 ÿ1.0939 ÿ1.1055 ÿ1.1093
1/3 ÿ0.47157 ÿ1.3215 ÿ2.7010 ÿ13.605 ÿ1.0956 ÿ1.1735 ÿ1.1850 ÿ1.1889
0.3 ÿ0.48598 ÿ1.2714 ÿ2.5644 ÿ12.859 ÿ0.9826 ÿ1.0554 ÿ1.0663 ÿ1.0700
0.2 ÿ0.45798 ÿ1.0192 ÿ1.9807 ÿ9.803 ÿ0.6493 ÿ0.7025 ÿ0.7106 ÿ0.7133
0.1 ÿ0.31221 ÿ0.6028 ÿ1.1297 ÿ5.517 ÿ0.3224 ÿ0.3507 ÿ0.3552 ÿ0.3566
0 0 0 0 0 0 0 0 0

Z.-Q. Cheng et al. / International Journal of Solids and Structures 37 (2000) 3153±3175 3173



Berlincourt, D.A., Curran, D.R., Ja�e, H., 1964. Piezoelectric and piezomagnetic materials and their function in transducers. In:

Mason, W.P. (Ed.), Physical Acoustics, vol. 1. Academic Press, New York, pp. 169±270.

Bisegna, P., Maceri, F., 1996a. An exact three-dimensional solution for simply supported rectangular piezoelectric plates. J. Appl.

Mech. 63, 628±638.

Bisegna, P., Maceri, F., 1996b. A consistent theory of thin piezoelectric plates. J. Intell. Mater. Syst. Struct. 7, 372±389.

Cheng, Z.Q., Lim, C.W., Kitipornchai, S., 1999. Three-dimensional exact solution for inhomogeneous and laminated piezoelectric

plates. Int. J. Engng Sci. 37, 1425±1439.

Crawley, E.F., de Luis, J., 1987. Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25, 1373±1385.

Gol'denveizer, A.L., 1969. Boundary layer and its interaction with the interior state of stress of an elastic thin shell. J. Appl. Math.

Mech. 33, 971±1001.

Heyliger, P., 1994. Static behavior of laminated elastic/piezoelectric plates. AIAA J. 32, 2481±2484.

Heyliger, P., 1997. Exact solutions for simply supported laminated piezoelectric plates. J. Appl. Mech. 64, 299±306.

Heyliger, P., Brooks, S., 1996. Exact solutions for laminated piezoelectric plates in cylindrical bending. J. Appl. Mech. 63, 903±910.

Heyliger, P., Pei, K.C., Saravanos, D., 1996. Layerwise mechanics and ®nite element model for laminated piezoelectric shells.

AIAA J. 34, 2353±2360.

Huang, J.H., Wu, T.L., 1996. Analysis of hybrid multilayered piezoelectric plates. Int. J. Engng Sci. 34, 171±181.

Koconis, D.B., KollaÂ r, L.P., Springer, G.S., 1994a. Shape control of composite plates and shells with embedded actuators. I.

Voltages speci®ed. J. Compos. Mater. 28, 415±458.

Koconis, D.B., KollaÂ r, L.P., Springer, G.S., 1994b. Shape control of composite plates and shells with embedded actuators. II.

Desired shape speci®ed. J. Compos. Mater. 28, 459±482.

Lee, C.K., 1990. Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing

equations and reciprocal relationships. J. Acoust. Soc. Am. 87, 1144±1158.

Lee, C.K., Moon, F.C., 1989. Laminated piezopolymer plates for torsion and bending sensors and actuators. J. Acoust. Soc. Am.

85, 2432±2439.

Lee, J.S., Jiang, L.Z., 1996. Exact electroelastic analysis of piezoelectric laminae via state space approach. Int. J. Solids Struct. 33,

977±990.

Librescu, L., Meirovitch, L., Na, S.S., 1997. Control of cantilever vibration via structural tailoring and adaptive materials. AIAA

J. 35, 1309±1315.

Librescu, L., Meirovitch, L., Song, O., 1996. Integrated structural tailoring and adaptive materials control for advanced aircraft

wings. J. Aircraft 33, 203±213.

Librescu, L., Song, O., Rogers, C.A., 1993. Adaptive vibrational behavior of cantilevered structures modeled as composite thin-

walled beams. Int. J. Engng Sci. 31, 775±792.

Mason, W.P., 1981. Piezoelectricity, its history and applications. J. Acoust. Soc. Am. 70, 1561±1566.

Maugin, G.A., 1988. Continuum Mechanics of Electromagnetic Solids. North-Holland, Amsterdam.

Maugin, G.A., Attou, D., 1990. An asymptotic theory of thin piezoelectric plates. Q. J. Mech. Appl. Math. 43, 347±362.

Mindlin, R.D., 1972. High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct. 8, 895±906.

Mitchell, J.A., Reddy, J.N., 1995. A re®ned hybrid plate theory for composite laminates with piezoelectric laminae. Int. J. Solids

Struct. 32, 2345±2367.

Pagano, N.J., 1969. Exact solutions for composite laminates in cylindrical bending. J. Compos. Mater. 3, 398±411.

Pagano, N.J., 1970. Exact solutions for rectangular bi-directional composites and sandwich plates. J. Compos. Mater. 4, 20±34.

Reddy, J.N., 1997. Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton, Florida.

Reddy, J.N., 1999. On laminated composite plates with integrated sensors and actuators. Engng Struct. 21, 568±593.

Sosa, H.A., 1992. On the modelling of piezoelectric laminated structures. Mech. Res. Commun. 19, 541±546.

Tarn, J.Q., 1994. An asymptotic theory for dynamic response of anisotropic inhomogeneous and laminated cylindrical shells. J.

Mech. Phys. Solids 42, 1633±1650.

Tarn, J.Q., 1996a. Elastic buckling of multilayered anisotropic plates. J. Mech. Phys. Solids 44, 389±411.

Tarn, J.Q., 1996b. An asymptotic variational formulation for dynamic analysis of multilayered anisotropic plates. Comput.

Methods Appl. Mech. Engng 130, 337±353.

Tarn, J.Q., Wang, Y.M., 1994. An asymptotic theory for dynamic response of anisotropic inhomogeneous and laminated plates.

Int. J. Solids Struct. 31, 231±246.

Tarn, J.Q., Wang, Y.M., 1995. Asymptotic thermoelastic analysis of anisotropic inhomogeneous and laminated plates. J. Thermal

Stresses 18, 35±58.

Tarn, J.Q., Wang, Y.B., 1997. A re®ned asymptotic theory and computational model for multilayered composite plates. Comput.

Methods Appl. Mech. Engng. 145, 167±184.

Tarn, J.Q., Yen, C.B., 1995. A three-dimensional asymptotic analysis of anisotropic inhomogeneous and laminated shells. Acta

Mech. 113, 137±153.

Z.-Q. Cheng et al. / International Journal of Solids and Structures 37 (2000) 3153±31753174



Tashiro, K., Tadokoro, H., Kobayashi, M., 1981. Structure and piezoelectricity of poly (vinylidene ¯uoride). Ferroelectrics 32,

167±175.

Tauchert, T.R., 1992. Piezothermoelastic behavior of a laminated plate. J. Thermal Stresses 15, 25±37.

Tiersten, H.F., 1969. Linear Piezoelectric Plate Vibrations. Plenum Press, New York.

Tzou, H.S., 1993. Piezoelectric Shells: Distributed Sensing and Control of Continua. Kluwer Academic Publishers, Dordrecht.

Tzou, H.S., Bao, Y., 1995. A theory on anisotropic piezothermoelastic shell laminates with sensor/actuators applications. J. Sound

Vib. 184, 453±473.

Wang, B.T., Rogers, C.A., 1991. Laminated theory for spatially distributed induced strain actuators. J. Compos. Mater. 25, 433±

453.

Wang, Y.M., Tarn, J.Q., 1994. A three-dimensional analysis of anisotropic inhomogeneous and laminated plates. Int. J. Solids

Struct. 31, 497±515.

Whitney, J.M., 1987. Structural Analysis of Laminated Anisotropic Plates. Technomic Publishing, Lancaster.

Wu, C.P., Tarn, J.Q., Chi, S.M., 1996a. Three-dimensional analysis of doubly curved laminated shells. J. Engng. Mech. 122, 391±

401.

Wu, C.P., Tarn, J.Q., Chi, S.M., 1996b. An asymptotic theory for dynamic response of doubly curved laminated shells. Int. J.

Solids Struct. 33, 3813±3841.

Wu, C.P., Tarn, J.Q., Yang, K.L., 1996c. Thermoelastic analysis of doubly curved laminated shells. J. Thermal Stresses 19, 531±

563.

Xu, K., Noor, A.K., Tang, Y.Y., 1995. Three-dimensional solutions for coupled thermoelectroelastic response of multilayered

plates. Comput. Methods Appl. Mech. Engng. 126, 355±371.

Xu, K., Noor, A.K., Tang, Y.Y., 1997. Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic

multilayered plates. Comput. Methods Appl. Mech. Engng. 141, 125±139.

Zhou, Y.S., Tiersten, H.F., 1994. Elastic analysis of laminated composite plates in cylindrical bending due to piezoelectric

actuators. Smart Mater. Struct. 3, 255±265.

Z.-Q. Cheng et al. / International Journal of Solids and Structures 37 (2000) 3153±3175 3175


