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Abstract

An asymptotic theory is developed for anisotropic inhomogeneous and laminated piezoelectric plates on the basis
of three-dimensional linear piezoelectricity. The inhomogeneity is assumed in the thickness direction and includes
the important piezoelectric laminates as a special case. Through asymptotic expansions, the resulting two-
dimensional differential equations are of the same form for each order, with different nonhomogeneous terms being
determined systematically by preceding-order solutions. The governing equations of the leading-order, when
degenerated to pure elasticity, are shown to be the same as those for equivalent classical thin elastic plates. The
proposed methodology is illustrated by considering a rectangular piezoelectric plate subject to both mechanical and
electric loadings with its edges simply supported and grounded. A three-dimensional solution for the fully
electromechanically coupled problem is obtained by successively solving the two-dimensional field equations from
the leading order to higher orders. Excellent agreement is observed with established results and new results are
presented, from which significant physical insights are discussed. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the discovery of the piezoelectric effect by Curie brothers in 1880, research on piezoelectricity
has received much attention (e.g. Tiersten, 1969; Mason, 1981; Maugin, 1988). The use of piezoelectric
materials as media to transform electric and acoustic waves has made telecommunication possible.
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Advanced micro-electro-mechanical systems (MEMS) use piezoelectric materials in the latest
technologies of smart/intelligent designs featuring miniaturization. One example is the application of the
piezoelectric accelerometer to trigger an airbag in tens of thousandths of a second during an accident.
The electromechanical coupling of piezoelectric materials has immense technological potential in
designing smart/intelligent materials and structures ranging from huge aerospace structures to miniature
medical apparatus. Because of their relative small size and light weight, piezoelectric elements can be
integrated in a complex actuator network such as in robotics design without significantly affecting the
structural properties of the entire system.

The development of research in piezoelectricity in the last decade has been particularly intensive. The
distinctive coupling of electricity and elasticity has been foreseen to have valuable potential in
engineering applications. The use of piezoelectric actuators as elements of intelligent structures was
investigated by Crawley and de Luis (1987) via experiments and analytic models. Other relevant work
includes those of Lee and Moon (1989), Lee (1990), Wang and Rogers (1991), Zhou and Tiersten
(1994), Koconis et al. (1994a, 1994b), and Batra et al. (1996a, 1996b). A theory was proposed by Tzou
(1993) and Tzou and Bao (1995) for vibration control of laminated thin shells with piezoelectric sensors
and actuators. In another attempt, Mitchell and Reddy (1995) developed a hybrid laminated plate
model combining the higher-order laminated plate theory for mechanical displacements and the
layerwise theory for an electric potential. Reddy (1999) further extended an equivalent single-layer plate
model and presented Navier solutions for rectangular laminates with integrated sensors and actuators
and displacement finite element models. The possibility of tailoring adaptive materials to control
vibration of aircraft wings was explored by Librescu et al. (1993, 1996, 1997). Other piezoelectric plate
analyses include the work of Mindlin (1972), Tauchert (1992), and Huang and Wu (1996) in which the
mechanical displacement components were modeled by either the classical or the first-order shear
deformation plate theory.

To date, most two-dimensional plate models are based on either the classical Kirchhoff hypothesis or
shear deformation theories which do not account for the interfacial continuity conditions. Moreover,
some of the theories presume that the inplane electric field components are negligibly small compared
with the transverse electric field component. However, it was revealed from the exact three-dimensional
analyses of Bisegna and Maceri (1996a) and Cheng et al. (1999) that this is not always the case. On the
contrary, the inplane electric field components are more significant than the transverse component in the
circumstances where the electric displacements on the top and bottom surfaces of a plate are unequal.

In the light of these deficiencies in existing two-dimensional laminated piezoelectric plate models,
various three-dimensional approaches have been proposed. A transfer matrix approach was developed
by Sosa (1992) to study the electromechanical coupling characteristics of infinite laminated piezoelectric
plates. Using modified approaches, Xu et al. (1995, 1997) and Lee and Jiang (1996) developed an
analytic three-dimensional methodology for multilayered piezoelectric plates to investigate the effects of
electroelastic response and obtained exact three-dimensional solutions. By extending the work of Pagano
(1969, 1970) for pure elastic laminates, Heyliger (1994, 1997) and Heyliger and Brooks (1996) presented
some exact solutions for laminated piezoelectric plates. All of these approaches appear to apply only to
simply supported plates.

Based on the three-dimensional linear theory of piezoelectricity, a consistent theory for thin single-
layer piezoelectric plates made of crystals of Class mm6 symmetry was proposed by Maugin and Attou
(1990) and Bisegna and Maceri (1996b) from asymptotic approaches. A leading-order approximation of
the asymptotic expansion has been given in the two studies. As stated by Maugin and Attou (1990),
however, the computation of higher-order expansions requires the knowledge of the relevant boundary
conditions, which could be obtained by studying the boundary layer effects along the contour of the
plate. As a matter of fact, this is a difficult problem (Gol’denveizer, 1969). In general, specifying the
edge boundary conditions in the sense of the Kirchhoff plate theory only yields the accurate leading-
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order interior solution. The leading-order solution does not account for the through-thickness
distribution of the edge boundary conditions and can not be valid near to the edges. An accurate and
consistent description of the boundary conditions for solving high-order interior solutions should
account for the specified edge distribution to achieve a decaying state, i.e. asymptotic to the exact
solution away from edges. The modified boundary conditions differ from those for the classical
Kirchhoff theory by a number of corrective terms reflecting the boundary layer effects on the interior
solution.

In a recent paper, Wang and Tarn (1994) developed an asymptotic solution for bending and
stretching modes of anisotropic inhomogeneous and laminated plates under lateral tractions and edge
loads, where no boundary layer effects are present. Similar approaches were further extended to some
other problems of simply supported plates and shells (Tarn, 1994, 1996a, 1996b; Tarn and Wang, 1994,
1995, 1997; Tarn and Yen, 1995; Wu et al., 1996a, 1996b, 1996c¢). The asymptotic theories developed are
based on three-dimensional elasticity, and the resulting field equations of each order are reduced to two-
dimensional plate and shell equations which can be successively solved to obtain an interior solution.

The asymptotic approach of Wang and Tarn (1994) in elasticity is generalized to the scope of
piezoelectricity in this paper. An anisotropic inhomogenecous and laminated rectangular piezoelectric
plate with its edges simply supported is considered in illustrative examples. An asymptotic three-
dimensional solution for the plate is obtained and the effects of electromechanical coupling are analyzed.
Excellent agreement is demonstrated with established results for laminated piezoelectric plates.

2. Formulation

Consider a plate of uniform thickness # of inhomogenous piezoelectric materials. Let a Cartesian
coordinate system {x;} (i = 1,2,3) be used such that the bottom and top surfaces of the undeformed
plate lie in the planes x3;=0 and 4, with the reference plane being x3=0. Throughout this paper, the
Einsteinian summation convention applies, unless otherwise specified, to repeated indices of tensor
components, with Latin indices ranging from 1 to 3 while Greek indices over 1 and 2. The dependence
of functions and operators on x, and x3 is not shown explicitly unless necessary.

The description of linear piezoelectricity is based on the elements of elasticity, electrodynamics and
their coupled interactions by means of two mechanical variables, the stress and strain tensors t; and Sy,
and two electric variables, the electric displacement and electric field vectors D; and Ej. In the absence
of body forces and electric charge density, the field equations of elastic equilibrium and Gauss’ law of
electrostatics are (Tiersten, 1969; Maugin, 1988)

Tijj = 0, D,‘ﬂi =0. (1)
The strain and electric field are related to the elastic displacements u;, and the electric potential ¢

through the gradient relations:

1
Sk1 = E(uk,l +u),  Ex=—9y, (2)

where the second equation implies a quasi-static approximation.

Since there are only 13 relations in the above equations for 22 unknowns, the following 9 additional
equations for constitutive relations are complemented for a complete formulation of the linear theory of
static piezoelectricity

Tjj = CijkiSk1 — exijE,
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D; = ejxSki + i Ex, 3)

where c;; is the fourth-order elastic tensor measured at a constant electric field, eg; the third-order
piezoelectric tensor, and &; the second-order dielectric tensor measured at a constant strain. These
material moduli exhibit the following symmetries

Cijll = Cjikl = Cklij»
CLij = Ckjis
Eik = Eki- 4)

In particular, the constitutive relations for a monoclinic piezoelectric material with a binary axis
parallel to the x3-axis can be cast as

Tof = CapupSwp T+ Cap33533 — €345 E3, (5a)

T3 = 2Ca3035w3 — Cou3 Ews (Sb)

133 = C330pSwp + 3333533 — €333 k3, (5¢)

Dat = 231(U3Sw3 + gawEw (5d)
and

D3 = e34,,Swpy + €333533 + €33E3, (5e)

or, in matrix form,

1 e e enzs 0 0 cie 0 0 e31] St

™2 cnn cpi3 0 0 cppp 0 0 e S»

33 c3333 0 0 e 0 0 €333 S33

™ 33 313 0 e;3 exn 0 2853

3| = ci3i3 0 ez ez 0 283 |- (6)
3P cppr 0 0 312 281

D] sym. —&11 —E&12 0 —E1

Dz —& 0 —E2

| D3 | L —&3 | | —E5 |

Here, the only material symmetry is assumed to be of reflectional symmetry in planes parallel to the
surfaces of the plate. Accordingly, the numbers of independent elastic, piezoelectric and dielectric
moduli are, respectively, 13, 8 and 4 for the monoclinic materials. The inhomogeneity of materials is
with respect to x3 only, i.e.

Ciikl = Ciri(X3),

erij = ek(x3),
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ek = ei(X3). (7

In particular, if the plate is a layered or laminated medium, comprised of layers of different
homogeneous monoclinic piezoelectric materials, then the material moduli are piecewise constant
functions of xs.

Egs. (1), (2), (5¢) and (5¢) may be reformulated as

Up3 = —U3 T 2803,
T333 = —Tu3,us
D3,3 = _Dp,pa
Tu33 = —Tap,p

€333U33 + €333 3 = T33 — C330pSwp and

e333U33 — €330 3 = D3 — €30pSewp- ®)

By substituting Eqgs. (5a) and (5d) into Eq. (8) to eliminate 7,5 and D,, and expressing S,3 from Eq.
(5b) in terms of 7,3 and ¢, the following transfer matrix equation can be given

- 08 2)[2)

where we have scaled the thickness coordinate x3=¢z, and thus €d/dx3=0/dz = 9., from the range of
x3€[0,h] to the range of z €[0,a] by a small thickness parameter ¢=//a, with a being a typical inplane
dimension. The field functions are chosen as

G=|"™|, (10)

which ensure the continuity condition of the relevant physical quantities across each layer interface
according to the requirements of equilibrium and material continuity. The 4 x 4 operator matrices, A
and B, contain the inplane differential operator 9, = 9/9x, and depend on z only through the material
moduli:

A=|:I . —Jpap :|
—Jpdp Kpgydpd, |°
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_ | —Lppdpdy —Mpdp
B—[—M,,Taﬁ N ’ (1

where A and B have been partitioned into 2 x 2 operator sub-matrices. I and N are the matrices with
each of their elements being a scalar defined by

1 _
T= (") = (k) = (Sl

2 _
C1313€2323 — €133 €1323  C1313
or
C1313  €1323
(C3ozr)3) =
’ 133 33 |
1 € e
N= (N(xo)) = 33 333 ,or
€3333633 + €333 €333 —C3333
or
_ c e
Nl — | 63333 €3 | (12)
€333  —E&33

Denoting s as the Kronecker delta function, Jz and Mg are the matrices with each of their elements
being a vector defined by

5 7] = [un 17ena).

[M%I M%z] = [caps3  €30pIN, (13)
and Kg, and Lg, are the matrices with each of their elements being a tensor defined by

1 _ pr12 _ g2l
K/fp_Kﬁp_Kﬁp_o’
K%% = J;j,’ze,,mg + &gy,

LZ’(;;) = Capowp — M7;1 C330p — M/a}2e3wp- (14)

Here, we have used the superscripts, to which the conventional summation also applies, to denote the
row and column indices of a matrix element in order to distinguish the subscripts of the corresponding
element which is a vector or a tensor. These sub-matrices are only related to the material moduli
depending on x3. The inplane stresses and inplane electric displacements, which may be discontinuous in
X3, are given by

Tup = Lig) 0ty + M%I‘L’33 + M;2D3, and
and

D, =J%t5— K00 (15)
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3. An asymptotic approach

The general problem of piezoelectricity is to determinate the global and local electroelastic field under
applied mechanical and electric loadings. In this paper, the mechanical loading is specified by the shear
tractions ¢ and the normal tractions (13i imposed on the plate surfaces. Assume that the two surfaces
of the plate are coated with very thin conducting electrodes which may carry an alternating forcing
potential. For simplicity, the thickness of each electrode is considered to be negligibly small, giving a
mathematical surface with a specified electric potential. Specifically, the electric load is given by applied
potentials ¥*. A short circuit condition corresponds to the same electric potentials holding on the
electroded surfaces.

For general mechanical loading conditions (in particular, the tractions on the top and bottom surfaces
are not equal), the shear stresses are of the order O(¢?) and the normal stress is of the order O(¢ %), as in
the case of pure elasticity (Wang and Tarn, 1994). These surface forcing functions are then scaled as

,3(x,,0) = €745 (x,), (16a)
T,3(x,0) = £ (x,), (16b)
133(x,,0) = —&'q5 (x)), (17a)
133(x p,a) = —&3q3 (x ). (17b)

The surface electric potentials are constructed to be of the order O(c?), i.e.

P(x,0) = &V 7 (x,), (18a)

P(xp.a) = €V T (x,). (18b)

To find solutions of successive approximations, we express the field functions F and G in the form of
regular expansion in terms of the small thickness parameter ¢ as

0 (n)
£)- 512

n=0

Note that the above expansion terms only contain odd powers of the small parameter ¢ for F and even
powers for G. This is because all of the complemented expansion terms, even powers for F and odd
powers for G, will result in homogeneous equations and thus furnish a trivial solution. All of the
inhomogeneous parts contributed by the mechanical and electric loads as scaled by Egs. (16)—(18) can
be accounted for by only using Eq. (19). Specifically, the surface traction conditions (Egs. (16) and (17))
and the surface electric potential conditions (18) may be expressed by the components of the expansion
in Eq. (19) for F and G as, for the leading order,

20 =0 =0,

g9 =@ =0,
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£90) =50 =0,
1 Pa) =@ =0,
£4(0) = ¢(0) =0,
g(@) = ¢"(a) = 0, (20)

and, for the remaining orders,

200y = <V(0) = ¢ 8,0,
g (@) = %5 (@) = ¢ 0,0,
£ %00) = 57(0) = —g5 00,
1@ = 5 (@) = —gT o
gan+l)(0) = ") = V6,0,

2/"@) = ¢ (@) = V8,0, (n20), (21)
Substituting the expansion in Eq. (19) into Eq. (9) leads to the simple recurrence relations as

2-g” =0,
9. = Ag("),

3.g" ) = Bf", (n>0). (22)

The resulting recurrence relations suggest that a solution can be obtained by successively integrating
these differential equations with respect to z and using Egs. (20) and (21) for the bottom surface

0
0) —
g = U (30) s (233')

0

(n)
U 1}1

()
g — | Uz + 0Ag™, (23b)

—43 5/11
(1)
DO"
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q7 Ono
q; Ono
U (3n+1)
V =0u0

e+l = + OBf", (n>0), (23¢)

where the fundamental unknowns are some of the components of the expanded field functions, i.e. the
components of three mechanical displacements and the electric displacement at the bottom surface z = 0
of the plate,

UL =ul)(x,.0),
Ug") = u(3")(xp,0),

Dg?) = Dg")(xp,0+), (24)

with the integral operator being

()= L( )z, (25)

Most plate theories implicitly designate the midplane of a plate to be the reference plane and hence
the fundamental unknowns are those at the midplane. It is clear, however, that at least four components
of the unknown functions F and G will be known a priori when we choose either of the plate surfaces to
be the reference plane. Accordingly, the problem will be reduced to determining the remaining
components of the unknown functions. For the specific problem in which the surface tractions and the
surface electric potentials are prescribed by Egs. (16)—(18), the fundamental unknowns have been chosen
as the physical quantities on the bottom surface of the plate, i.e. Eq. (24). These unknowns have to be
determined in such a way that the conditions (Egs. (16)—(18)) for the tractions and the electric potential
on the top surface z=aq are satisfied through Egs. (23a), (23b) and (23c¢).

Substituting the expression of g" from Eq. (23¢) into Eq. (23b) results in an alternative expression

£ — X™ 4 g™, (26)

where

Ul —za,UY

X0 = | UY —z,0y |, (27a)
0
Dy’
4 0
H" =6, 0A| B |~ 2; + QAQB" V. (27b)
V- 0

With Egs. (26) and (27b), the auxiliary function H" are found to have the following recurrence relation
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4 0
> 0

HUD =600 0A| 2 | = | o | | +QAOBX" +H"), (28)
V- 0

with the leading term H®=0.
By denoting the integral operators

O(-) = L (- )iz, (29)

the traction and the electric potential conditions (21) on the top surface of the plate can be recast,
through Egs. (23a), (23b) and (23c), as

OB.if V" = (47 — 47 )0u0s (30a)

045,87 = —(47 — 45 )om (30b)
and

OBarf " = (VF =V )dn, (30c)

where an upper case subscript L takes the values from 1 to 4 and the implicit summation convention
also applies. Further, using Eq. (23¢) and noting that A3, = —9d, and A;3;3=A34=0, Eq. (30b) can be
rewritten as

—0(a—2)Budof ' = [ (aF = ¢5) + adsg; 610, (31)
which, when taken with Eq. (30a), gives
0zBudof 1 = [ = (4 — 45) + adug Jono- (32)

Egs. (30a), (32) and (30c) can be recast, with the aid of Eq. (26), in the form of the matrix equation

RX™ +H") = §,0Y, (33)

or, denoting RX" = ﬁf((n),

Ri(n) =5,0Y — RH(n)’ (34)
where

() (n) (n) (n) (1) r

" =[vy vy vy o). (35)

The components of the operator matrices R and R are expressed as

Roau = Raw = _Q_L;};}Uaﬂapa

Ry3 = QzL}"050,,0,.
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Ry = —QMj'0y.

Ry = Ry = —Q_M§28ﬁ,

Rs,, = Rs, = —QzL}20,040,,
Ry3 = 027 L300,0 50,0,

R3; = —QzM}' 0,0,

Ry = Ry = —Q_ZM;ZB“E),;,
Ray = Ry = —Q_M;?Za/f,

Ryz = QM350

Ry; = ON?!,

Riys = Ryg = ON* (36)
and the components of Y involved in the effective loads on the right hand side of Eq. (34) are

szq;__q;’

Ys =—(q3 — q5) + aduq;
and
Ya=Vt—V-. (37)

Eq. (34) gives the crucial field equations obtained through the field asymptotic approach, from which
the unknowns Eq. (35) of each order can be solved with specified edge conditions at the reference plane
for any set of given material parameters and load parameters. It is obvious from Eq. (34) that Y is only
related to the field equation at the leading-order (n = 0), while H" only contributes to the higher-order
field equations due to H®=0. Since Y is known «a priori from Eq. (37), the unknowns of the leading
order can be determined from the field equation of the leading order. Then H" can be obtained from
Eq. (28) and, hence, the unknowns for n = 1 can be solved from the associated boundary value problem
of the corresponding order. Such a procedure may be continued in this way to higher orders, giving a
simple recurrence process. The higher-order solutions may be considered as the corrections to the
leading-order solution. Therefore, it shows how a full three-dimensional interior solution can be
obtained to any desired degree of accuracy.

The differential operator, R, as given by Eq. (36) for the field equations (34) may be recognized, if
degenerated from piezoelectricity to pure elasticity, as being identical with that of the classical plate
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theory (Whitney, 1987; Reddy, 1997) for the bending of a thin monoclinic plate or laminate. Moreover,
the matrix operators R and R involved in Eq. (34) have the same form for the field equations of all
orders. Apart from Y, which is nontrivial only for the leading order, the effective loads on the right-
hand side of Eq. (34) only involves the derivatives of the auxiliary function H” with respect to x, and
its integration with respect to z. The auxiliary function of higher-order may be obtained from its
preceding lower-order solution according to Eq. (28), which involves those operators being the same for
all orders. Consequently, any numerical technique can easily be applied to the field asymptotic equations
by always solving the same equations for piezoelectric plates, with the effective loads being simply
determined by lower-order solutions.

4. Illustrative example

Two different piezoelectric laminated plates made of lead zirconate titanate (PZT-4) and
polyvinylidene fluoride (PVDF) are considered to illustrate the asymptotic method presented in this
paper. They are a two-layer laminate of dissimilar piezoelectric materials PZT-4/PVDF and a three-layer
PVDF laminate. These plates are rectangular and of equal thickness for each layer. Their edges are
simply supported and grounded at x; =0,a¢ and x,=0,b, i.c.

w=u3 =11 = ¢ =0,0on x; =0,a and

uy=u3s =10 =¢ =0,0n x; =0,b. (38)
The mechanical and electric loadings are specified as
+

f—r cos [1x1 sin hx,,

Il
=»

q

sin /1x cos hxo,

Il
>

q3i = c}f sin /;x sin /»x5 and

V= 171 sin /1 x1 sin hhx», (39)
with

L = i and

L =" (40)

where a quantity with a hat denotes the amplitude of the corresponding physical quantity. The peak
values (i.e. amplitude) of these quantities may not occur at the same location as there could be a phase
lag. For the specific problem, the pointwise edges conditions (38) can be satisfied both mechanically and
electrically by assuming
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U(l”) U(ln) cos /1 x| sin hx»
~n) .
uw U, sin l1x; cos bhx
~(n)_ 2 _ 2 11 2X2
X = m || Am . . ’ “0)
Uj U; sin [ixy sin hx,
(n) ~
DO _Dg1) sin l]X] sin 12)(2 i

Solutions of each order may be conducted in the way described earlier, generating numerical results to
the desired degree of accuracy for the specific problem.

The material moduli of PZT-4 (Berlincourt et al., 1964) and PVDF (Tashiro et al., 1981) are
summarized in Table 1, where ¢, is the permittivity of a vacuum. Those moduli used by Heyliger (1997)
are enclosed in parentheses wherever different from the original values. Emphasis should be placed on
e13 which is not available (marked by stars) in both papers (Heyliger and Brooks, 1996; Heyliger,
1997). It is found that e;13=e¢5,3 was used by Heyliger et al. (1996). However, this relation is only valid
for PZT-4 but not for PVDF because of mm2 symmetry of the PVDF material.

Throughout the following examples, two loading conditions are examined. One is termed as applied
load, corresponding to normal traction ¢ on the top surface with vanishing electric potential, and
another termed as applied potential, corresponding to electric potential ¥ " on the top surface with
vanishing normal traction. For both loading conditions, mechanical and electric loadings on the bottom
surface and shear tractions on the top surface are set to zero, i.e. g3 = V'~ =¢F =0. In addition,
my=m,=1 is used.

A comparison study for a PZT-4/PVDF laminate with reference to Heyliger (1997) is presented in
Table 2. This is a rectangular laminate with PZT-4 on the top and PVDF on the bottom and with equal
thickness. The aspect ratio is a/b = 2 and the span-to-thickness ratio is a/h = 10. The mechanical and

Table 1
Moduli of piezoelectric materials

Moduli PZT-4 PVDF

¢ (GPa) 139 238.24 (238)
222 (GPa) 139 23.6

3333 (GPa) 115 10.64 (10.6)
1122 (GPa) 71.8 3.98

c1133 (GPa) 74.3 2.19

2233 (GPa) 74.3 1.92

2323 (GPa) 25.6 2.15

3131 (GPa) 25.6 4.4

ci212 (GPa) 30.6 6.43

e (C/m?) -52 —0.13

e (C/m?) -52 —0.145 (—0.14)
333 (C/m?) 15.1 (15.08) —0.276 (—0.28)
ex3 (C/m’) 12.7 (12.72) ~0.009 (—0.01)
e1s (C/m2) 12.7 (****)b —0.135 (****)b
en/eo 1475 12.5

£20/60 " 1475 11.98

£33/60 * 1300 11.98

% 60=28.854185 pF/m.
b (***): values not available in Heyliger (1997).
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electric quantities are non-dimensionalized by

u; _ Tjj
/Ay

i _ e*p — D;
P P 7 Pac i

Di = 5 .
Pe*

(42)

where either P = —gq7 /c* for applied load or P = l>+(e*/ac'*) for applied potential, with ¢*=1 N/m?
and ¢*=1 C/m”. For the purpose of consistent comparison, the moduli values used by Heyliger (1997)
have been adopted only to calculate the results in Table 2 and, in particular, e;;3=e53=—0.01 for
PVDF have been employed. The order of solution is increased from 0 to 7 where the higher-order
solutions are obtained via the recurrence procedure described in Section 3. It can be seen that the
second-order results are quite good. Numerical convergence to four significant digits is reached for the
7th-order solutions and thus subsequent higher-order solutions are not necessary. As observed, the 7th-
order solutions are in excellent agreement with the results of Heyliger (1997). The slight numerical
difference in this comparison is possibly due to numerical truncation errors of PZT-4 and PVDF moduli
between Heyliger (1997) and this work.

Hereafter, the original moduli of PZT-4 and PVDF in Table 1, taken from Berlincourt et al. (1964)
and Tashiro et al. (1981), are used and, in particular, e;;3=—0.135 is adopted. As a corrective step and
for future reference, the dimensionless electric potential through the plate thickness for the above two-
layer PZT-4/PVDF laminate is presented in Fig. 1 for applied load and in Fig. 2 for applied potential.
As expected, the electric potentials in Figs. 1 and 2 are nonlinear through the thickness considering the
entire laminate as a whole. Specifically, it is possible to assume the electric potential to be (i) a pieccewise
quadratic distribution for a laminate under applied load, as in Fig. 1, and (ii)) a piecewise linear
distribution for a laminate under applied potential, as in Fig. 2.

It has been discovered by Bisegna and Maceri (1996a) from a thin single-layer plate limit and by
Cheng et al. (1999) from an exact analytic solution of laminates, thin or thick, that the assumption of
neglecting inplane electric field in two-dimensional thin piezoelectric plate models is satisfactory if D} —
D3 = 0. This is because the ratio of inplane electric field to the transverse electric field is of the order of
plate thickness, which is a small quantity. For the cases when Di — Dj # 0, those thin piezoelectric
plate models are unjustified as they have neglected the inplane electric field which, compared with the

Table 2
Comparison of solutions of different orders at amplitude with exact results for a two-layer PZT-4/PVDF laminate (a/b = 2,
alh = 10)

Applied load
Order
uy (x3=0) D; (x3=h) Ti3 (x3=h/2) 733 (x3=h/2)
0 1.524e—11 1.225e—11 0 0
1 1.397e—11 1.836e—10 1.232 0.4007
2 1.416e—11 2.044e—10 1.140 0.3513
7 1.413e—11 2.014e—10 1.150 0.3572
Heyliger (1997) 1.414e—11 2.011e—10 1.149 0.3571
Applied potential
0 —2.743e—12 —2.254e—9 0 0
1 —1.890e—11 —4.978¢—8 —0.0836 0.0121
2 —1.602e—11 —4.734e—8 —0.4120 —0.2289
7 —1.640e—11 —4.749¢—8 —0.3478 —0.1851
Heyliger (1997) —1.640e—11 —4.752¢—8 —0.3451 —0.1869
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transverse electric field, is of order of the reciprocal of plate thickness. Such a significant physical insight
is consistent with the numerical result given in Fig. 3.

Fig. 3 shows the amplitude ratio E, /12"3 of the inplane-to-transverse electric field components which is
discontinuous at the PZT-4/PVDF interface. It is noticed that although the inplane electric field is
negligible within the PVDF layer, on the contrary, it is more significant than the transverse electric field
in the PZT-4 layer, and E> is even more pronounced as Ey =2E). Consequently, the assumption of a
negligible inplane electric field is unjustifiable, at least in the present case.

Numerical results are given for a three-ply (0°/90°/0°) PVDF piezoelectric plate, with each ply being
homogeneous and having equal thickness. The plate is infinitely wide (b — oo) such that a/b — 0, and
thus we have u,=D,=1,=1,35=0. Although a range of results has been graphically given by Heyliger
and Brooks (1996), we present a wider spectrum of the physical quantities in tabulated form. There is a
two-fold purpose here. The first purpose is to present more accurate results using ey;3=-—0.135 for
PVDF as compared to the results of Heyliger and Brooks (1996) where e¢;;3=-—0.01 was used. The
second purpose is to provide a complete set of results of the physical quantities as a benchmark for
future references.

The asymptotic solutions for mechanical displacements, stresses, electric potential and electric
displacements through the plate thickness are presented in Tables 3—11 to the accuracy as presented.
Tables 3-8 contain peak values of the dimensionless quantities (i, us3, 713, 733, @ and 133) continuous
across the interfaces, while Tables 9—11 contain peak values of the dimensionless quantities (71, T, and
D) discontinuous across the interfaces. The span-to-thickness ratio, a/h, increases from 4 (a moderately
thick plate) to 100 (a thin plate). The point in the thickness direction extends from x;=0 (bottom) to

0.8
0.6
N
04
02
0 1 1 1
0 0.001 0.002 0.003 0.004

$/(ag; 1¢")

Fig. 1. Amplitude distribution of dimensionless electric potential through the thickness for a two-layer PZT-4/PVDF laminate
under applied load (a/b = 2 and a/h = 10).
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Fig. 2. Amplitude distribution of dimensionless electric potential through the thickness for a two-layer PZT-4/PVDF laminate
under applied potential (a/b = 2 and a/h = 10).

Table 3

Amplitude of inplane mechanical displacement i;; x 100 for a three-layer (0°/90°/0°) PVDF laminate (a/b = 0)

Applied load

Applied potential

X3/h

alh = 4 alh = 10 alh = 20 alh = 100 alh = 4 alh = 10 alh = 20 alh = 100
1 —0.23887 —0.96691 —3.4965 —84.305 0.000740 —0.011595 —0.028813 —0.15374
0.9 —0.11750 —0.68979 —=2.7113 —67.357 —0.004109 —0.014142 —0.030148 —0.15401
0.8 —0.03897 —0.44992 —1.9623 —50.446 —0.008397 —0.016753 —0.031546 —0.15430
0.7 0.02383 —0.23446 —1.2395 —33.561 —0.013679 —0.019574 —0.033026 —0.15460
2/3 0.04504 —0.16604 —1.0027 —27.937 —0.015966 —0.020587 —0.033541 —0.15470
0.6 0.02990 —0.09803 —0.6003 —16.761 —0.014161 —0.019620 —0.033032 —0.15460
0.5 0.00693 0.00293 0.0022 0.002 —0.010722 —0.017748 —0.032046 —0.15440
0.4 —0.01732 0.10364 0.6045 16.764 —0.006238 —0.015356 —0.030790 —0.15414
1/3 —0.03479 0.17120 1.0069 27.940 —0.002546 —0.013461 —0.029801 —0.15394
0.3 —0.01479 0.23939 1.2436 33.564 —0.003075 —0.013678 —0.029910 —0.15397
0.2 0.04435 0.45403 1.9662 50.449 —0.004362 —0.014377 —0.030278 —0.15404
0.1 0.11825 0.69286 2.7149 67.361 —0.005547 —0.015177 —0.030714 —0.15413
0 0.23239 0.96867 3.4998 84.309 —0.007054 —0.016124 —0.031224 —0.15423




Z.-Q. Cheng et al. | International Journal of Solids and Structures 37 (2000) 31533175

08 r

0.6

xy/h

0.4

0.2

3169

Fig. 3. Amplitude distribution of electric field components ratio through the thickness for a two-layer PZT-4/PVDF laminate under

applied potential (a/b = 2 and a/h = 10).

Table 4
Amplitude of out-of-plane mechanical displacement i3 x 100 for a three-layer (0°/90°/0°) PVDF laminate (a/b = 0)

Applied load Applied potential
X3/h

alh =4 alh =10 alh =20 alh =100 alh =4 alh =10 alh =20 alh =100
1 1.9716 9.5648 51.356 5401.2 0.23461 0.22532 0.22347 0.22280
0.9 1.9516 9.5614 51.362 5401.3 0.20436 0.19874 0.19744 0.19696
0.8 1.9318 9.5567 51.366 5401.3 0.17560 0.17241 0.17147 0.17112
0.7 1.9136 9.5514 51.368 5401.4 0.14817 0.14631 0.14556 0.14528
2/3 1.9079 9.5495 51.368 5401.4 0.13931 0.13766 0.13694 0.13667
0.6 1.8974 9.5459 51.368 5401.4 0.12191 0.12042 0.11970 0.11944
0.5 1.8841 9.5409 51.366 5401.4 0.09654 0.09466 0.09388 0.09361
0.4 1.8738 9.5365 51.363 5401.4 0.07183 0.06901 0.06808 0.06776
1/3 1.8686 9.5338 51.360 5401.4 0.05564 0.05196 0.05090 0.05053
0.3 1.8664 9.5325 51.359 5401.4 0.04760 0.04344 0.04231 0.04191
0.2 1.8612 9.5284 51.352 5401.3 0.02376 0.01794 0.01655 0.01607
0.1 1.8575 9.5236 51.344 5401.3 0.00019 —0.00752 —0.00919 —0.00976
0 1.8541 9.5177 51.333 5401.2 —0.02324 —0.03295 —0.03493 —0.03560
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Table 5
Amplitude of out-of-plane shear stress 7,3 for a three-layer (0°/90°/0°) PVDF laminate (a/b = 0)

Applied load Applied potential
x3/h

alh =4 alh =10 alh =20 alh = 100 alh = 4 alh =10 alh =20 alh = 100
1 0 0 0 0 0 0 0 0
0.9 1.0324 1.9422 3.6422 17.8300 —0.016280 0.006570 0.011434 0.013112
0.8 1.4928 3.2800 6.3849 31.626 —0.005226 0.019371 0.024520 0.026292
0.7 1.5480 4.0850 8.2645 41.486 0.034232 0.038696 0.039337 0.039542
2/3 1.4847 4.2433 8.7039 43.892 0.055241 0.046689 0.044678 0.043975
0.6 1.4766 4.2662 8.7667 44.236 0.040759 0.029769 0.027274 0.026404
0.5 1.4739 4.2804 8.8028 44.429 0.018308 0.004197 0.001115 0.000045
0.4 1.4830 4.2705 8.7691 44.236 —0.005631 —0.021730 —0.025140 —0.026317
1/3 1.4960 4.2506 8.7078 43.893 —0.022809 —0.039282 —0.042712 —0.043895
0.3 1.5458 4.0905 8.2679 41.487 —0.024493 —0.036253 —0.038680 —0.039515
0.2 1.4643 3.2813 6.3868 31.627 —0.023832 —0.026060 —0.026297 —0.026364
0.1 1.0012 1.9415 3.6430 17.800 —0.015831 —0.014063 —0.013429 —0.013194
0 0 0 0 0 0 0 0 0

x3=h (top) and the laminate interfaces are located at x3=#h/3 and 2hi/3. For the discontinuous
interfacial quantities, values at both neighboring surfaces of the interfaces are tabulated.

The mechanical inplane displacement u;, in the case of applied potential, is approximately constant
through the thickness for a very thin plate (column 9 in Table 3) but it varies considerably in the case of
applied load even if the plate is very thin (column 5 in Table 3). From the distributions of #; in Table 3
and 7,3 in Table 5, the piezoelectric plate under applied load behaves similarly to a purely elastic plate.
In particular, i, is linear for a thin laminate and zigzag for a thick laminate (Pagano, 1969). Compared
with the results of Heyliger and Brooks (1996) using e;;3=—0.01, the through-thickness distributions of
u; and 73 are very sensitive to variation in ej;3 for a thick PVDF laminate under applied potential
(column 6 in Tables 3 and 5), but it is rather indifferent to e;13 when the laminate is thin (column 9 in

Table 6
Amplitude of out-of-plane normal stress 733 for a three-layer (0°/90°/0°) PVDF laminate (a/b = 0)

Applied load Applied potential
X3/h

alh = 4 alh =10 alh =20 alh = 100 alh = 4 alh =10 alh = 20 alh = 100
1 1 1 1 1 0 0 0 0
0.9 0.95480 0.96777 0.97018 0.97098 0.0008329 —0.0000870 —0.0000877 —0.00002058
0.8 0.85263 0.88427 0.89028 0.89231 0.0018490 —0.0004779 —0.0003678 —0.00008246
0.7 0.73081 0.76726 0.77411 0.77642 0.0009183 —0.0013723 —0.0008671 —0.00018585
2/3 0.69102 0.72360 0.72965 0.73168 —0.0002430 —0.0018187 —0.0010869 —0.00022958
0.6 0.61352 0.63447 0.63814 0.63937 —0.0027574 —0.0026195 —0.0014637 —0.00030328
0.5 0.49771 0.50017 0.50007 0.50000 —0.0050843 —0.0031537 —0.0016867 —0.00034483
0.4 0.38167 0.36579 0.36197 0.36063 —0.0055943 —0.0028794 —0.0014982 —0.00030356
1/3 0.30371 0.27654 0.27043 0.26831 —0.0048548 —0.0022409 —0.0011430 —0.00023004
0.3 0.26381 0.23281 0.22595 0.22357 —0.0042332 —0.0018453 —0.0009299 —0.00018636
0.2 0.14333 0.11570 0.10974 0.10768 —0.0022840 —0.0008620 —0.0004190 —0.00008287
0.1 0.04368 0.03219 0.02982 0.02900 —0.0006797 —0.0002267 —0.0001063 —0.00002073

0 0 0 0 0 0 0 0 0
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Table 7
Amplitude of electric potential ¢ for a three-layer (0°/90°/0°) PVDF laminate (a/b = 0)

Applied load Applied potential
x3/h

alh = 4 alh =10 alh = 20 alh = 100 alh =4 alh =10 alh = 20 alh = 100
1 0 0 0 0 1 1 1 1
0.9 0.0014445 0.0019806 0.0033090 0.015431 0.88329 0.89735 0.89942 0.90011
0.8 0.0024851 0.0034655 0.0058526 0.027427 0.77211 0.79545 0.79893 0.80006
0.7 0.0033122 0.0045361 0.0076720 0.035995 0.66578 0.69437 0.69864 0.70007
2/3 0.0035504 0.0048103 0.0081228 0.038091 0.63130 0.66083 0.66525 0.66675
0.6 0.0038747 0.0052708 0.0089457 0.042050 0.56365 0.59397 0.59852 0.60004
0.5 0.0040411 0.0055279 0.0094081 0.044276 0.46479 0.49411 0.49854 0.50000
0.4 0.0038296 0.0052657 0.0089445 0.042050 0.36859 0.39471 0.39868 0.39996
1/3 0.0034823 0.0048024 0.0081208 0.038091 0.30566 0.32865 0.33215 0.33332
0.3 0.0032413 0.0045280 0.0076701 0.035995 0.27449 0.29568 0.29891 0.29998
0.2 0.0024171 0.0034581 0.0058510 0.027426 0.18204 0.19696 0.19924 0.19998
0.1 0.0013971 0.0019757 0.0033081 0.015431 0.09073 0.09843 0.09961 0.09999
0 0 0 0 0 0 0 0 0

Tables 3 and 5). In other words, the solutions of thick laminates under applied potential differ
significantly from the solutions of Heyliger and Brooks (1996) while the thin laminate solutions do not.
Note that for a laminate under applied load, the transverse mechanical displacement i3 is approximately
constant through the thickness even for a thick plate with a/h = 4 (columns 2-5 in Table 4). By
contrast, in the case of applied potential, its distribution is not constant (columns 6-9 in Table 4).
Therefore, assuming at least a piecewise linear distribution along the thickness direction for s is
necessary in this case for constructing a proper two-dimensional approximate theory.

The distribution of electric potential is presented in Table 7. For both thin and thick laminates, its
distribution is approximately piecewise parabolic for applied load while it is approximately piecewise
linear for applied potential. It is noted that the transverse electric displacement Dj varies insignificantly

Table 8
Amplitude of transverse electrical displacement D3 x 10'° for a three-layer (0°/90°/0°) PVDF laminate (a/b = 0)

Applied load Applied potential
X3/h

alh =4 alh = 10 alh = 20 alh = 100 alh =4 alh =10 alh =20 alh = 100
1 —0.23462 —0.22531 —0.22345 —0.22282 —5.4216 —11.695 —22.839 —113.31
0.9 —0.22054 —0.21531 —0.21421 —0.21383 —5.1552 —11.588 —22.785 —113.30
0.8 —0.18863 —0.18937 —0.18943 —0.18944 —4.9211 —11.492 —22.737 —113.29
0.7 —0.15042 —0.15301 —0.15340 —0.15352 —4.7173 —11.407 —22.695 —113.28
2/3 —0.13789 —0.13944 —0.13961 —0.13966 —4.6557 —11.381 —22.682 —113.28
0.6 —0.13400 —0.13536 —0.13548 —0.13551 —4.5513 —11.338 —22.660 —113.27
0.5 —0.12811 —0.12916 —0.12921 —0.12922 —4.4166 —11.281 —22.631 —113.27
0.4 —0.12221 —0.12297 —0.12295 —0.12293 —4.3076 —11.234 —22.607 —113.26
1/3 —0.11831 —0.11888 —0.11881 —0.11879 —4.2488 —11.209 —22.595 —113.26
0.3 —0.10575 —0.10529 —0.10502 —0.10492 —4.2216 —11.197 —22.589 —113.26
0.2 —0.06798 —0.06890 —0.06898 —0.06900 —4.1575 —11.169 —22.575 —113.26
0.1 —0.03686 —0.04297 —0.04419 —0.04461 —4.1194 —11.153 —22.566 —113.25

0 —0.02325 —0.03297 —0.03495 —0.03562 —4.1068 —11.147 —22.564 —113.25
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Table 9

Amplitude of inplane stress 71, for a three-layer (0°/90°/0°) PVDF laminate (a/b = 0)

Applied load

Applied potential

x3/h

alh = 4 alh = 10 alh = 20 alh =10 alh = 4 alh =10 alh =20 alh =10
1 18.055 72.454 261.46 6299.4 —0.40572 0.11042 0.6766 4.1633
0.9 8.978 51.742 202.79 5033.0 —0.02602 0.30764 0.7798 4.1843
0.8 3.089 33.802 146.81 3769.4 0.30970 0.50886 0.8873 4.2063
0.7 —1.628 17.679 92.78 2507.8 0.71739 0.72489 1.0005 4.2293
2/3 —3.220 12.558 75.08 2087.5 0.89194 0.80215 1.0398 4.2372
2/3 —0.202 1.352 7.49 204.9 —0.27442 —0.80629 —1.6612 —8.3893
0.6 —0.106 0.836 4.52 123.0 —0.27939 —0.80986 —1.6632 —8.3897
0.5 0.039 0.069 0.07 0.1 —0.29374 —0.81890 —1.6680 —8.3907
0.4 0.194 —0.696 —4.37 —122.8 —0.31754 —0.83247 —1.6752 —8.3922
1/3 0.306 —1.209 —7.34 —204.8 —0.33952 —0.84411 —1.6813 —8.3934
1/3 2.659 —12.738 —75.18 —2087.6 —0.08549 0.28076 0.7659 4.1815
0.3 1.157 —17.842 —92.88 —2507.8 —0.04407 0.29784 0.7745 4.1832
0.2 —3.287 —33.903 —146.89 —3769.5 0.05669 0.35206 0.8030 4.1890
0.1 —8.828 —51.765 —202.85 —5033.1 0.14806 0.41308 0.8362 4.1958
0 —17.365 —72.380 —261.50 —6299.4 0.26160 0.48419 0.8745 4.2037

for applied potential for not very thick PVDF laminates (columns 7-9 in Table 8) as Ds is almost
constant through the thickness. However, D3 varies significantly for applied load, even if for a thin plate

(columns 2-5 in Table 8).

5. Conclusions

An asymptotic scheme for anisotropic inhomogeneous and laminated piezoelectric plates in the

Table 10

Amplitude of inplane stress Ty, for a three-layer (0°/90°/0°) PVDF laminate (a/b = 0)

Applied load

Applied potential

X3/h
alh = 4 alh = 10 alh = 20 alh = 100 alh =4 alh =10 alh = 20 alh = 100

1 0.45617 1.2909 4.1888 96.758 —0.45664 —0.96995 —1.8871 —9.3498
0.9 0.30918 0.9678 3.2841 77.339 —0.42852 —0.95801 —1.8811 —9.3486
0.8 0.20123 0.6783 2.4120 57.952 —0.40373 —0.94703 —1.8755 —9.3475
0.7 0.10787 0.4109 1.5636 38.589 —0.38073 —0.93686 —1.8703 —9.3464
2/3 0.07658 0.3248 1.2845 32.139 —0.37317 —0.93362 —1.8687 —9.3461
2/3 0.09331 0.3423 1.3021 32.156 —0.28270 —0.71249 —1.4279 —7.1449
0.6 0.09365 0.2448 0.8209 19.334 —0.27858 —0.71095 —1.4272 —7.1447
0.5 0.09456 0.0996 0.1005 0.101 —0.27433 —0.70953 —1.4265 —7.1446
0.4 0.09690 —0.0452 —0.6199 —19.132 —0.27253 —0.70920 —1.4264 —7.1446
1/3 0.09981 —0.1422 —1.1009 —31.955 —0.27280 —0.70960 —1.4266 —7.1446
1/3 0.09133 —0.1502 —1.1087 —31.962 —0.35526 —0.92736 —1.8656 —9.3455
0.3 0.06141 —0.2360 —1.3877 —38.413 —0.35224 —0.92605 —1.8650 —9.3454
0.2 —0.02753 —0.5025 —2.2359 —57.775 —0.34499 —0.92273 —1.8633 —9.3450
0.1 —0.12972 —0.7908 -3.1077 —77.162 —0.34010 —0.92030 —1.8620 —9.3448
0 —0.26816 —1.1124 —4.0120 —96.581 —0.33718 —0.91870 —1.8612 —9.3446
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Table 11
Amplitude of inplane electrical displacement D; x 10" for a three-layer (0°/90°/0°) PVDF laminate (a/b = 0)

Applied load Applied potential
x3/h

alh = 4 alh =10 alh = 20 alh = 100 alh = 4 alh =10 alh = 20 alh = 100
1 0 0 0 0 —3.6072 —3.6072 —3.6072 —3.6072
0.9 —0.32196 —0.6030 —1.1294 —5.517 —3.1812 —3.2389 —3.2479 —3.2509
0.8 —0.46698 —1.0189 —1.9801 —9.802 —2.7835 —2.8753 —2.8894 —2.8940
0.7 —0.48689 —1.2697 —2.5634 —12.859 —2.4121 —2.5166 —2.5322 —2.5374
2/3 —0.46833 —1.3193 —2.6998 —13.604 —2.2942 —2.3980 —2.4134 —2.4185
2/3 —0.07398 —0.1937 —0.3914 —1.964 —2.1068 —2.2049 —2.2195 —2.2245
0.6 —0.07473 —0.1962 —0.3968 —1.992 —1.8807 —1.9813 —1.9964 —2.0014
0.5 —0.07517 —0.1976 —0.3999 —2.007 —1.5502 —1.6473 —1.6620 —1.6668
0.4 —0.07484 —0.1963 —0.3969 —1.992 —1.2285 —1.3149 —1.3280 —1.3322
1/3 —0.07423 —0.1939 —0.3916 —1.964 —1.0180 —1.0939 —1.1055 —1.1093
1/3 —0.47157 —1.3215 —2.7010 —13.605 —1.0956 —1.1735 —1.1850 —1.1889
0.3 —0.48598 —1.2714 —2.5644 —12.859 —0.9826 —1.0554 —1.0663 —1.0700
0.2 —0.45798 -1.0192 —1.9807 —9.803 —0.6493 —0.7025 —0.7106 —0.7133
0.1 —0.31221 —0.6028 —1.1297 —5.517 —0.3224 —0.3507 —0.3552 —0.3566
0 0 0 0 0 0 0 0 0

framework of three-dimensional piezoelectricity has been presented. Without accounting for boundary
layer effects, an interior solution can be obtained using a numerical recurrence procedure to the desired
accuracy.

Numerical examples presented have shown excellent agreement with published data. In addition, new
results for two different piezoelectric laminates comprised of PZT-4 and PVDF materials have been
presented. Significant physical interpretations have been discussed. The two-dimensional piezoelectric
plate models that make certain assumptions through the laminate thickness, such as linear electric
potential for applied load or constant transverse displacement for applied potential, is not consistent
with the results presented in this paper even for a thin plate. In addition, neglect of the inplane electric
field is questionable at least in the case where the top and bottom transverse electric displacements are
unequal.

In contrast to almost all approximate two-dimensional plate theories which provide no insight into
the significance of neglecting certain physical quantities, the asymptotic approach developed here is able
not only to obtain accurate interior solutions and important physical insights but also to assess the
order of error involved.
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